College News

Avocado Power

Professor Ian Hosein

The high demand for lithium-ion batteries has triggered significant research interest in finding alternative ion carriers. In a recent publication, Biomedical and Chemical Engineering Professor Ian Hosein’s research team showed how they produced high performance hard carbon from avocado peels using high temperature processing. Electrochemical measurements confirmed the use of avocado-derived hard carbon as electrode active materials, with high reversible capacities of 320 mAh g−1 over 50 cycles at 50 mA g−1, good rate performance of 86 mAh g−1 at 3500 mA g−1, and Coulombic efficiencies above 99.9% after 500 cycles.

Ian Hosein holding a sample of avocado carbon

“We see avocado carbon as a cost effective and abundant source that yields a promising anode material for high-rate performance sodium-ion batteries,” says Hosein.

The research was supported by a grant from the National Science Foundation. Doctoral students Francielli Silva Genier, Shreyas Pathreeker, Robson Luis Schuarca and Dr. Mohammad Islam collaborated with Hosein on the research and publication in the IOPscience journal.

Professor Ian Hosein with an avocado and an avocado carbon sample

Honeywell Chairman and CEO Darius Adamczyk G’91 Elected as a Member of the National Academy of Engineering

Darius Adamczyk G’91

The National Academy of Engineering (NAE) announced that Honeywell chairman and CEO Darius Adamczyk G’91 was elected as a member for the class of 2023. Election to the National Academy of Engineering is among the highest professional distinctions accorded to an engineer. Academy membership honors those who have made outstanding contributions to “engineering research, practice, or education, including, where appropriate, significant contributions to the engineering literature” and to “the pioneering of new and developing fields of technology, making major advancements in traditional fields of engineering, or developing/implementing innovative approaches to engineering education.”

Adamczyk is one of 106 new members elected in the NAE Class of 2023. He was selected for his “technical and business leadership in quantum computing, sustainable technologies, and automation, and promoting diversity in STEM careers.”

In 1991, Adamczyk earned a master’s degree in computer engineering from Syracuse University.

“We are so genuinely excited for Darius Adamcyzk, as induction into the NAE is a career-defining achievement. This honor asserts what we have known for many years: Darius is a world-class engineer, innovator, and visionary,” says Engineering and Computer Science Dean J. Cole Smith. “His achievements are a reflection of his journey from Poland as a young man, through his wildly successful university experiences, and now as a world leader in engineering and technology. He is an exemplar of what any immigrant, or any engineer, or any Orange student can hope to achieve.”

Before being elected chairman of Honeywell in 2018 and named president and CEO in 2017, Adamczyk served as president and chief operating officer. In those roles, he has focused on accelerating Honeywell’s growth, building the company’s advanced software programming capabilities and implementing a high-performance culture.

Rolling Right Off

New research from Syracuse University shows how nanochannels, oil and candle soot could provide a water repelling surface with numerous applications.

Surfaces that allow water or other liquids to roll right off are uniquely present in nature, such as on lotus leaves as well as on few aquatic insects, enabling them to walk on water or breathe under water by trapping a layer of air on their bodies. Such superhydrophobic surfaces can be helpful in a variety of engineering applications, ranging from coating of windshields and surgical tools, to steam turbines and condensers in power plants, and to improved hydrodynamics of submarines and ships.

Despite advancements in the development of artificially engineered superhydrophobic surfaces, durability and regenerative aspects of such surfaces remain elusive. Harsh working conditions including extreme exposure to water or humidity can deteriorate such surfaces especially after extended under-water usage.

Mechanical and aerospace engineering doctoral student Durgesh Ranjan and Professor Shalabh C. Maroo have developed a new approach for creating a durable superhydrophobic surface by first plasma-treating a fabricated porous nanochannel geometry on a silicon substrate followed by infusion-depletion of silicon oil and coating a layer of carbon derived from candle soot.

Surface Honey Test

“We are able to engineer a superhydrophobic surface which is durable against high-speed water jets, non-sticky to many liquids ranging from water to honey, and stable under water for months,” says Maroo.

Research from Ranjan, Maroo and An Zou was published in the January 2023 issue of the high impact Chemical Engineering Journal and the technology is also patent pending. Their surface  is capable of maintaining water contact angles of over 160° and roll off angle less than 5° even after undergoing 20 different tests, including chemical resistance to seawater and various solvents, high temperature exposure up to 570oF, condensation heat transfer, self-cleaning using fine all-purpose flour, frosting-defrosting cycles with ice, concentrated solar radiation exposure, and compatibility with organic products like honey, milk and syrup,  thus exhibiting potential real-world applications.

Electrical Engineering Student Selected as an IEEE Power and Energy Society Scholarship Recipient

Electrical engineering student Jemma Mallia ’23 was selected as a 2022 IEEE Power and Energy Society Scholarship Plus Initiative recipient.

Mallia, vice president of the IEEE student branch, was chosen to receive the competitive scholarship by industry and academic representatives. The committee recognized Mallia for obtaining the knowledge and skills necessary to make an impact across the power and energy industry.

She was presented with the award by Electrical Engineering and Computer Science Professor Jay K. Lee, Student Activities Chair of the IEEE Syracuse Section. Mallia was recommended for the scholarship by Electrical Engineering and Computer Science Professor Sara Eftekharnejad. The research Mallia has done with Eftekharnejad’s research group was highlighted in her application.

“I am honored to be selected for this award knowing how many students are recommended for it,” said Mallia. “I’m very grateful for the support IEEE Power and Energy Society is showing for students and for supporting research related to integrating renewable energy into the power grid.”


This program includes a financial stipend along with complimentary one-year membership in IEEE and in the Power & Energy Society. 

Syracuse University Environmental Finance Center Receives Multi-Million Dollar Environmental Protection Agency Grant to Support Underserved Communities

Drone shots of campus during the summer.
Drone shots of campus during the summer.

The Syracuse University Environmental Finance Center (SU-EFC) was selected by the United States Environmental Protection Agency (EPA) to serve as a regional Environmental Finance Center (EFC) to help communities access federal infrastructure funds, and continue supporting environmental and financial challenges in the communities that need it most. SU-EFC will continue serving EPA Region 2, which includes New York, New Jersey, Puerto Rico, US Virgin Islands, and eight Native Nations, and is one of 29 Environmental Finance Centers awarded to support states, local governments, and Native Nations as they work to protect the environment and public health over the next five years.

“Our team is honored to continue working with the EPA in providing a range of services, products, and local community engagement that have proven highly successful in helping communities improve their environmental quality, integrate sustainability concepts in decision making, and cultivate collaborative networks and relationships with other federal, state, and local agencies and private sector partners,” says Melissa Young, director, Resource Conservation Initiatives.

“The unprecedented nature of the funding SU-EFC has received from the EPA to provide technical assistance to underserved communities demonstrates a real commitment to ensuring safe, affordable, and reliable water for every household in the country,” says Khristopher Dodson, director, Water Resiliency Initiatives. “SU-EFC is proud to be part of the national network of EFCs who will be providing these services, in some cases as teams, across the country.”

SU-EFC will be awarded $1,084,000 for the first year, and then at least $950K annually over the remaining four years. The Center will serve as both a Regional Multi-Environmental Media EFC and a Regional Water Infrastructure EFC to provide no-cost technical assistance to local municipalities, states, and Native Nations to build capacity and support equitable infrastructure investments. As a Regional Water Infrastructure EFC, SU-EFC will also work with communities to improve accessibility to Bipartisan Infrastructure Law funds in order to support clean and safe water access across EPA Region 2.

Community leaders who are looking for ways to access federal funds authorized by the Bipartisan Infrastructure Law are encouraged to contact SU-EFC staff or visit their website for more information on free upcoming events.

Electrical Engineering and Computer Science Faculty Attain Prestigious IEEE Fellow Recognition

Electrical engineering and computer science faculty members Wenliang (Kevin) Du and Vir Phoha have been recognized as Fellows of the Institute of Electrical and Electronics Engineers (IEEE) for 2023, a high professional honor conferred on less than 0.1% of the organization’s membership annually.

IEEE is the world’s largest technical professional organization dedicated to advancing technology for the benefit of humanity. It has 409,000 members in more than 160 countries who are engineers, scientists and allied professionals whose technical interests are rooted in electrical and computer sciences, engineering and related disciplines.

The Fellow designation is the IEEE’s highest level of membership, attained through nomination by peers and approval by the IEEE Board of Directors.

Du is being recognized for contributions to cybersecurity education and research. Phoha is being honored for his work developing attack-averse active authentication in computing systems using behavioral patterns.

Du’s research focuses on system security for web, mobile, smartphone/tablet and Android operating systems. He has also developed improved access control for mobile systems. In the area of computer security education, work that he began in 2002 to develop hands-on labs for student computer security education, is now used by more than 1000 universities and colleges in more than 80 countries.

This year, he also received the IEEE Region 1 Technological Innovation (Academic) Award. Du also recently was named principal investigator for a National Science Foundation grant of $399,000, “Building and Internet Emulator for Cybersecurity Education.”

Phoha’s research in systems security involves studying malignant systems, active authentication, machine learning, decision trees and statistical and evolutionary methods. He looks at large-time series data streams and static data sets and anomalies and optimization of computer networks to build defensive and offensive cyber-based systems.

Phoha was named a Fellow of the National Academy of Inventors in 2020 and a Fellow of the American Association for Advancement of Science in 2018. He has achieved 13 patents for inventions in machine learning, biometrics, user identification and authentication, data decision-making and cybersecurity attacks. He is currently an associate editor of IEEE Transactions on Computational Social Systems and two other journals.

Du and Phoha were nominated for Fellow status by Distinguished Professor Pramod Varshney, of the department of Electrical Engineering and Computer Science, who was himself recognized an IEEE Fellow in 1997.

Two other professors of electrical engineering and computer science at Syracuse University, Biao Chen (2015) and Jian Tang (2019), have also been named IEEE Fellows.

First Year Aerospace Engineering Students Test Rover Designs

Mars Rover Testing

First year aerospace engineering students in Professor John Dannenhoffer’s ECS 101 class tested their Mars rover designs at the end of the fall semester. Teams of students designed small rovers designed to remotely retrieve “Mars rocks” (golf balls) and deploy a scientific instrument on a surface replicating the red planet.

With classmates cheering them on, teams deployed their rovers to see if their design and programming would allow them to retrieve samples and bring them back to the landing area. Points are assigned for how many “Mars rocks” a team’s rover interacts with, how many rocks they bring back to the deployment zone and if the rover is able to deploy a scientific instrument.

Electrical Engineering and Computer Science Professor Qinru Qiu Named as a Distinguished Member of the Association for Computing Machinery

Qinru Qiu Portrait

Electrical engineering and computer science Professor Qinru Qiu has been named a Distinguished Member of the Association for Computing Machinery (ACM), the world’s largest and most prestigious association of computing professionals.

Qiu was selected by her peers for her outstanding scientific contributions to computing. The ACM Distinguished Member program recognizes up to 10 percent of ACM worldwide membership based on professional experience and significant achievements in the computing field. To be nominated, a candidate must have at least 15 years of professional experience in the computing field, five years of professional ACM membership in the last 10 years and must have achieved a significant level of accomplishment or made a significant impact in the field of computing, computer science, or information technology. A Distinguished Member is expected to have served as a mentor and role model by guiding technical career development and contributing to the field beyond the norm.

 “This is an important and well deserved honor for Dr. Qiu,” said Engineering and Computer Science Dean J. Cole Smith. “Throughout her career she has been an innovator in the field of green computing, and I have been fortunate to learn about some of her contributions in brain-inspired neuromorphic computing techniques. In addition to her brilliant scholarly innovations, the College of Engineering and Computer Science has also benefited from her very significant leadership and instruction efforts. Dr. Qiu is thoughtful and reliable in every component of her job, and we are thrilled to see her honored by the ACM.”

Syracuse University Part of Collaborative Team Researching Preventing Infections in Engineered Tissue and Implantable Devices

Advancements in biomedical devices such as knee and hip implants, heart valves, pacemakers, dental implants, stents, and catheters have improved quality of life for patients worldwide. These devices, however, introduce foreign material into a patient and are prone to chronic infections. Through a new grant, a cross-disciplinary group of experts will collaborate to develop new approaches to prevent device-associated infections and enhance the use of these implants.

The National Science Foundation (NSF) has awarded a $3.6 million grant to a team of researchers from five universities in a project titled “Collaborative Research: Growing Convergence Research: Infection-Resisting Resorbable Scaffolds for Engineering Human Tissue.” Syracuse University researchers teamed up with partners at Stevens Institute of Technology, Binghamton University, City College of New York, and the University of Pennsylvania Veterinary School.

The project will address the development of healthy tissue and mitigate the risk of infection in implantable devices as new biomaterials are being developed to replace failed, damaged, or defective body parts. 

The Syracuse University team is led by Shikha Nangia, Associate Professor of Biomedical and Chemical Engineering, and Dacheng Ren, Associate Dean of Research, College of Engineering and Computer Science and Stevenson Endowed Professor of Biomedical and Chemical Engineering. 

“The novelty of this project is the cross-disciplinary convergence of microbiology, polymer science, computational biochemistry, and biomaterials science,” said Nangia.

Another aspect of the project is to train the next generation in infection control.

“The Ph.D. and undergraduate students in the research labs will travel to partner institutions during summer and gain immersive research experience in a new lab to broaden their expertise,” Nangia added.  “I am very excited about this opportunity.”

“This project team includes researchers from five institutions, who have been working together over the past several years. It is a great example of how researchers from different disciplines can work together to solve challenging problems through convergence science,” said Ren.

Smart Gripping

Professor Wanliang Shan (center) and research team members Dr. Guangchao Wan (left) and Ph.D. student Chenxu Zhao (right)
Professor Wanliang Shan (center) and research team members Dr. Guangchao Wan (left) and Ph.D. student Chenxu Zhao (right)

Assembling electronic devices requires precision and the ability to place key components in tight spaces. Manufacturing systems need the ability to grip a component and then release it in the right spot. To make it even more challenging – the grippers need to be tiny and able to grip and release items that are measured in microns.

Mechanical and aerospace engineering Professor Wanliang Shan started considering the problem in 2016 while he was at the University of Nevada – Reno and was awarded a National Science Foundation (NSF) Materials, Engineering and Processing grant to explore the concept.

“I wanted to see if we could use smart materials to design and fabricate a soft gripper of composite structure with tunable adhesion. By running current through the smart material component, we could change it from rigid to soft and release objects due to reduced adhesion of the gripper,” said Shan.

The proof of concept Shan’s research team designed was successful in realizing a ~10 times dry adhesion change within a matter of seconds. Their work was published in the Advanced Materials Interfaces journal in 2018 and Shan was granted a patent in the spring of 2022.

“One of the advantages of this technology is that it could save energy compared to traditional suction cups,” said Shan. “When you pick things up the gripper is in the high adhesion state, only when you release do you use current to activate it.”

Shan has completed an NSF Innovation Corps project to conduct interviews with over 100 potential customers for the compliant manipulation technology and concluded that there is tangible industry demand for it. He has most recently received an NSF Partnership for Innovation (PFI) grant to see whether it is reasonable to set up a company and commercialize it.

“This is a new approach for how to manipulate objects,” said Shan. “Through the PFI project we will see if potential customers like our prototype. If it is successful, what will it focus on?”

As part of the NSF PFI grant, Shan and his research team are partnering with Cobham Advanced Electronic Solutions for market testing and customization options.

“I’m very thankful for the support from the NSF,” said Shan. “They fund essential research, customer discovery, prototype development and partnership building.”

Shan and his team are also developing a second approach to a soft gripper that uses pneumatics to tune adhesion. That research has received funding from the NSF National Robotics Initiative. Their most recent progress along this direction was published in the high-impact journal, Advanced Functional Materials. The research shows soft grippers with over 100 times dry adhesion change within one second when triggered by low pressure (~10 kPa) and thus low power consumption has been reported. Shan and his post-doctoral researcher Dr. Guangchao Wan filed for another patent on this approach in September 2022.

“We don’t use suction which is typically ~50 kPa, we use low pressure to affect adhesion to the object being gripped.”

Shan’s lab is pursuing both gripper approaches and he sees potential and challenges for both to succeed in different applications.

“They are different methods with different activation modes but parallel approaches,” said Shan. “Depending on the environment, we could see which one is better. Both approaches have a lot of potential to solve tangible challenges in industry. Smart materials that satisfy the needs of this technology are yet to be engineered; pneumatics is readily available in industry but it might present a more challenging task for minimization than the smart materials approach. Currently we are focusing on improving the performance of both approaches through the PFI project and other parallel efforts.”

Get To Know Your Advisor: Derek Pooley

Derek Pooley

Get to know your advisor!

Name: Derek K. Pooley    

Job Title: Assistant Director, Student Success

Office: Link 125

Hometown: Brewerton, NY

What is your favorite part of student advising?

I absolutely love watching students grow. Sometimes as an advisor, I see students at an all-time low and having the opportunity to work through that with them. To watch them morph and grow with time, is simply amazing! Seeing students who told me “It’ll never happen” graduate truly makes all the bad days go away.

What is your favorite spot on campus?

My favorite spot on campus is Link 4th floor.  I love looking over the quad while watching students mix and mingle with friends. It’s a great reality check and a great place to find peace. Going up there and eating my lunch truly makes a day better.

What is your best piece of advice for students?

ASK QUESTIONS! It’s only natural to not know or how to do something.  The only way to learn and grow is to ask.  It’s important to never tell yourself no!  I hear all the time, “they probably are too busy” or “they probably will say no”!  Don’t do that!  You never know until you ask!  Always ask!

Fun fact you might not know about me:

I have a huge love for Marching Band and Colorguard.  I am the Director of the Winterguard program and am the Marching Band Visual Coordinator at Liverpool Highschool. I have been teaching for almost 12 years and truly enjoy every second. This is a great place for my creativity to be used.

Mechanical and Aerospace Engineering Research Team Publishes Research on Efficient Conversion of Solar Energy

Quinn Qiao Lab

Mechanical and Aerospace Engineering Professor Quinn Qiao and a research team from the College of Engineering and Computer Science recently published two papers in Advanced Materials in collaboration with Peking University and other universities in Europe. Both papers focus on the organic solar cell (OSC), which is a photovoltaic device that converts solar energy to electrical energy. 

The first paper is titled Quasi-Homojunction Organic Nonfullerene Photovoltaics Featuring Fundamentals Distinct from Bulk Heterojunction and discusses the unconventional organic solar cells structure with more intrinsic charge generation and less charge recombination. The second paper is tilted Simultaneously Enhancing Exciton/Charge Transport in Organic Solar Cells by an Organoboron Additive and provides a facile strategy of morphology optimization to improve the performance of OSCs. In both cases, the solar cell’s power conversion efficiencies (PCE) increase which means they can convert solar energy to electrical energy more efficiently. And Qiao’s group confirmed the mechanism of better performance for the solar cell from experiments.

The research was conducted at Qiao’s solar cell lab in the Link Hall. An atomic force microscopy (AFM) was mainly used in the research to measure the current sensing AFM (C-AFM) data and an oscilloscope was used to obtain charge carrier dynamics data. The group has applied a patent for the measurement and has published many papers based on the technique recent years. In the future, the group will publish more influential papers in the field.

Professor Cliff Davidson Selected for Association of Environmental Engineering and Science Professors Distinguished Lecturer Tour

Civil and environmental engineering Professor Cliff Davidson was selected as the featured lecturer for the Association of Environmental Engineering and Science Professors Foundation (AEESP) 2022-2023 Distinguished Lecture Series.

Davidson is the Thomas and Colleen Wilmot Professor of Engineering at Syracuse University. He also serves as Director of Environmental Engineering Programs, and Director of the Center for Sustainable Engineering. He will be presenting two different lectures during the tour. The first lecture is titled “The Green Roof as a Complex System” and will focus on how the performance of a green roof can be modeled and measured in an effort to understand its benefits in built-up urban areas, using the instrumented extensive green roof on the Onondaga County Convention Center in Syracuse. The second lecture is titled “The Interactions of Airborne Particles with Surfaces” and will examine the many ways in which atmospheric particles interact with surfaces of all kinds – natural vegetation, agriculture crops, landscaping, bare soil, water, snowfields, and urban hardscape surfaces.

The AEESP tour will bring Davidson to Washington University in St. Louis, Northeastern University, Drexel University, the University of Illinois at Urbana-Champaign, University of Texas-El Paso, Carnegie Mellon, Georgia Tech, University of Colorado – Boulder, the University of Toronto in fall 2022. The tour schedule for spring 2023 is still being developed.

 “This is a great opportunity to meet with colleagues at other schools and learn about how they are coping with the challenges of research, teaching, and advising in the uncertain world we find ourselves in,” said Davidson.

Micron Technologies Announces Plans to Invest $100 Billion to Build a Semiconductor Fabrication Facility Near Syracuse

In a historic announcement for the Syracuse area, Micron Technology has committed an investment of up to $100 billion to build the largest semiconductor fabrication facility in the United States in Clay, NY.

The facility will create up to 9,000 jobs at four semiconductor fabrication plants on a 1,300 acre site just north of Syracuse and support up to 40,000 additional jobs in local supply chain and construction industries.

“It is hard to dream up an event that is more impactful for the Syracuse area, Syracuse University and the College of Engineering and Computer Science. To say that this investment will transform the region is a dramatic understatement,” said College of Engineering and Computer Science Dean J. Cole Smith.

“The electrical engineering and computer science department’s historical strength in chip design will lead to cutting edge research and educational collaborations between Syracuse University and Micron,” said Edelstein Professor for Broadening Participation and electrical engineering and computer science department chair Jae C. Oh. “We see incredible potential on research involving telecommunications, supercomputing, cloud storage systems, neuromorphic computing, microwave photonics, and quantum microwave communication and sensing.”

The site could eventually include four 600,000 square foot cleanrooms – the size of approximately 40 football fields. Site preparation work will start in 2023 with construction beginning in 2024.

“A semiconductor chip is the brain of almost everything that we use in everyday life, from washers and dryers to cars and cellphones. To fabricate a chip, we use photolithographic technology to ‘print’ circuits onto silicon wafers. The ‘printing’ has very high resolution, such that the size of an object (e.g., a transistor or a piece of wire) on the chip is only 1/10,000 of a hair and a typical chip may have billions of transistors,” said electrical engineering and computer science professor Qinru Qiu. “The semiconductor manufacturing process needs to be carried out in an extremely clean environment with no dust, and it takes many complicated steps.”

As part of the project, Syracuse University will partner with Micron on research, education, and workforce development needs that stem from this investment.

“Micron will need engineering and computer science talent, especially in the fields electrical and computer engineering, mechanical engineering, and chemical engineering,” says Smith. “But the opportunities will extend to every area of this College, and to many other programs outside the College at Syracuse University.”

“We are prepared to play an essential role in educating electrical and computer engineers capable of making an impact in the chip design and fabrication industry.  Micron’s commitment to research and development provides an exciting new opportunity for our students at all levels,” said electrical engineering and computer engineering undergraduate program director Jennifer Graham.

The facility will make dynamic random-access memory (DRAM) chips as part of Micron’s plan to significantly increase DRAM production.

“DRAM is such a central component in modern computing, so much so that it is called ‘main’ memory. When we think of computers, we first associate them with the verb compute, but compute is meaningless if the computed values are not stored in memory,” said electrical engineering and computer science professor Bryan Kim. “DRAM is that very component that stores the program’s data. Today’s data-intensive applications such as artificial intelligence and machine learning consume a tremendous amount of data and produce large models to capture hidden details in the data, all of which are stored in DRAM. Advances in DRAM technology will continue to enable next-generation computing systems and applications.”

Micron plans to use 100% renewable energy at the new facility and to use green infrastructure and sustainable building attributes for the construction of the New York fab to attain Leadership in Energy and Environmental Design (LEED) Gold status. Micron is also aiming to achieve a 42% reduction in greenhouse gas emissions from operations by 2030 and net-zero emissions by 2050.

Helping Others Achieve Their Dreams: Fadi Bahouth ’78

Drone shots of campus during the summer.
Drone shots of campus during the summer.

Before an engineer or computer scientist can solve the world’s most challenging problems and invent what was thought to be impossible – they are students working towards graduation. Providing scholarships to these students is an investment not only in them but in our own futures. Scholarships allow these promising students the ability to focus on their classes and pursue the degree they want without added worry.

Gifts from Syracuse University alumni can support scholarships for young engineers and computer scientists and give them an important boost as they prepare to start their careers. A chemical engineering degree opened many doors for Fadi Bahouth ’78 and he is grateful for the faculty, university staff and fellow students who helped him complete his degree after arriving in Syracuse as a refugee from the Lebanese civil war.  Now Bahouth and his wife Debra want others to have the opportunity he had at the College of Engineering and Computer Science no matter what financial challenges they may face. The couple have established The Cedars Scholarship to do just that.

“Without that help and the SU degree that resulted from it, the life that I have enjoyed since then would not have been possible,” says Bahouth. “I hope that this scholarship endowment would play a part in giving others the chance to earn an SU engineering degree and allow them to achieve their dreams just as I did.”

Min Liu Appointed Abdallah H. Yabroudi Endowed Professor in Sustainable Civil Infrastructure

Min Liu

The College of Engineering and Computer Science is proud to introduce Dr. Min Liu as the Abdallah H. Yabroudi Endowed Professor in Sustainable Civil Infrastructure at Syracuse University. 

Her research centers on developing innovative approaches and generating knowledge on how to integrate the human and engineering aspects of construction planning to improve productivity and project performance. She has published over 40 articles in top-ranked construction engineering and management journals. Her recent research on using an information theory approach to quantify information exchange effectiveness in construction planning won the 2021 American Society of Civil Engineers (ASCE) Thomas Fitch Rowland award. Her work also received the Best Paper Award from the 2018 International Group of Lean Construction Conference and from the 2017 Lean and Computing in Construction Congress. She has been recognized with “Thank a Teacher” awards in 2011, 2017, and 2018 from North Carolina State University.

Liu was the Chair of ASCE Construction Research Council (CRC) from 2020 to 2021. The CRC has over 400 members worldwide from construction faculty and is recognized as the premier forum for construction engineering and management research. Liu has also served as the associate specialty editor for the ASCE Journal of Management in Engineering since 2016 and the assistant specialty editor in labor and personnel Issues for the ASCE Journal of Construction Engineering and Management since 2009. She was selected as the outstanding reviewer by the ASCE Journal of Construction Engineering and Management in 2015 and 2017 and she co-founded Carolina’s Lean Construction Community of Practice in 2009.

Abdallah H. Yabroudi ’78, G’79is chief executive officer of Dubai Contracting Co. (DCC), headquartered in Dubai, United Arab Emirates. He has been associated with DCC since 1980. Yabroudi also serves as general manager of a development and contracting company in Chile and a development and construction company in Lebanon. He is director of the Dubai Construction Co. in Jordan and Saudi Arabia.  

Yabroudi is a member of the American Society of Civil Engineers; the Chartered Quality Institute (formerly the Institute of Quality Assurance); Chi Epsilon, a U.S. civil engineering honor society; and Tau Beta Pi, the nation’s oldest engineering honor society and second oldest collegiate honor society.

Yabroudi earned a bachelor’s degree in civil engineering, with honors, in 1978 and a master’s degree in industrial engineering and operations research a year later, both from Syracuse University’s College of Engineering and Computer Science. He also earned a bachelor’s degree in business administration from Haigazian University in Beirut, Lebanon.

Yabroudi serves on the Board Facilities Committee as a Life Trustee participant. He served as a Voting Trustee from 2009-2021. His Syracuse University service includes membership on the College of Engineering and Computer Science Dean’s Leadership Council He is a 2018 recipient of the George Arents Award, the University’s highest alumni honor, and has been named a Tau Beta Pi Distinguished Alumnus.

He and his wife, Maha Abou Gazale, have provided lead gifts for the establishment of the Abdallah H. Yabroudi Chair in Civil Engineering Endowed Fund; the Hasan Abdallah Yabroudi Middle East Center Endowed Fund; the Yabroudi CIE Faculty Support Fund; the Yabroudi CIE Renovation Fund; and the Yabroudi, Bitar and Ghazaleh Endowed Scholarship Fund. They have supported other initiatives in Engineering and Computer Science, Middle Eastern studies and study abroad.

They reside in Dubai and are the parents of Hasan, Ghada, Faisal and Omar.

Biomedical and Chemical Engineering Professor Shikha Nangia Receives Grant to Study How Protein Modifications Effect Human Health

Shikha Nangia

Humans are made of over a million proteins that perform crucial functions to maintain life. These proteins, however, can bind to small molecules in our cells and perform various new functions.

Biomedical and chemical engineering professor Shikha Nangia and her research team have received a three-year grant from the National Science Foundation to better understand how the modification of proteins effects human health. They will  use computer modeling and simulations to study changes in protein structure due to the attachment of the small molecules.

“Our group has studied protein through computer simulations for more than eight years. This grant will allow us to focus on how modified proteins affect human health,” says Nangia. “The funding will allow us to investigate scientific questions that have not yet been answered.”

This multidisciplinary project provides an excellent opportunity to train graduate students with different academic backgrounds, such as engineering, chemistry, biology, and computer science. The project will provide scientific training to undergraduate students through a cohort-based approach that will engage a team of 5–6 undergraduates in a ten-week summer research project.

The project will focus on training a diverse community of students from underrepresented minority students for graduate school. Students will be equipped with research experiences, fundamental knowledge, and professional skills to transition to doctoral programs in STEM disciplines successfully.

Meet the Engineering and Computer Science Career Services Team

Sarah Mack, Chelsey Franza, Jenn Fazio and Shelby Bergen

We are excited to announce the new Career Services staff for the College of Engineering and Computer Science. Career Advising provides students with the tools they need to succeed in today’s job market through information sessions, lobby tabling, career fairs, on-campus interviewing and more.

The Career Services staff works diligently to empower ECS students to successfully reach their professional goals by having a strong connection to industry coupled with workshops, seminars, office hours, and drop-in advising.

Current ECS undergraduate students can make an appointment with their assigned advisor on Handshake.

Sarah Mack
Sarah Mack

Sarah Mack (she/her/hers) – Director of Student Success & Career Services

Sarah has been in the College of Engineering & Computer Science since 2011, serving most recently as the Director of Student Success Advising.  In March 2022, Sarah’s role changed to include oversight of Career Services.  In her new role, Sarah directs the day-to-day operations of the Student Success & Career Services team including oversight of individual advising, programming, and other student-centered initiatives. 

In her free time, Sarah and her partner, Will, enjoy spending time exploring CNY with their French bulldogs, Zelda and Zoe. 

Jennifer Fazio
Jennifer Fazio

Jennifer S. Fazio (she/her/hers) – Assistant Director for Employer Relations & Career Services

Jennifer is thrilled to be coming back to the college of Engineering and Computer Science (ECS) and to be joining a dynamic team of career and success advisors. She has over thirteen years of experience in the career services field, including over five years working in ECS Career Services. Her most recent position was at SUNY ESF as the Assistant Director of Employer Relations where she led outreach initiatives with employers and coordinated large events including the annual fall/spring career fairs. She is excited to bring her experience back to SU and to work with the talented students, faculty, and staff that embody ECS. 

Jennifer is an avid sports fan, loves to run, and enjoys spending time with her husband and two daughters, Avyana and Olivia.

Chelsey Franza
Chelsey Franza

Chelsey Franza (she/her/hers) – Career Advisor

As a professional with over five years in higher education, Chelsey has developed an extensive background and a range of knowledge through diversified experiences from event planning and residence life to advising and leadership. Before accepting this position, Chelsey recently served as a Student Success Advocate at a community college, providing individualized support to students in pursuit of their educational goals.

Chelsey began her journey in a small suburban town just outside of Syracuse, bleeding orange from day one. Education took her north to SUNY Potsdam for a bachelor’s degree in business administration and communication, perpetually contributing to a solid foundation for lifelong learning. Her journey continued at Binghamton University with a master’s degree providing a more in-depth competence toward holistic student development. Her student support philosophy encompasses the influence of active listening, effective communication, and creativity to foster an inclusive environment that encourages authenticity. She is thrilled to be back in Orange Nation and aspires to pursue more advanced education in the upcoming years to best support learners in every avenue.

When she isn’t at work, she can be found with a good book or seeking new adventures with her dog, Paisley!

Shelby Bergen
Shelby Bergen

Shelby Bergen (she/her/hers) – Career Advisor

Shelby Bergen joins us from the College of Law where she was an Administrative Assistant in the Dean’s office. As a current student in the Higher Education Master’s Program, coupled with her three and a half years of institutional knowledge, Shelby is eager to work with students in achieving both their personal and professional goals. Shelby’s research interests include issues surrounding access, equity, and inclusion – particularly as it relates to LGBTQIAP students in higher education. In her free time, Shelby enjoys hiking, traveling, snowboarding, and is a registered foster for the CNY Cat Coalition.

Syracuse University Research Team Receives Grant to Advance the Ethereum Blockchain Ecosystem

Yuzhe Tang

Electrical engineering and computer science Professor Yuzhe Tang and his research team received a grant from the non-profit Ethereum Foundation for research to advance the Ethereum blockchain ecosystem.

The grant is part of the peer to peer (P2P) network grants from the Ethereum Foundation’s recent Academic Grants Round.

A blockchain network is an open-membership peer-to-peer network that stores the information of crypto-asset ownership. Thus, the security and availability of the blockchain network are essential to maintaining asset safety. For instance, if the blockchain network is down, crypto-asset owners cannot withdraw their assets, and traders cannot trade.

Tang’s proposed research aims to secure Ethereum’s P2P network against existing and emerging attacks. Ethereum is the second largest blockchain after Bitcoin and holds assets worth more than $190 billion as of August 2022. His research will involve systematic vulnerability discovery, online attack detection, and mitigation tailored to leading Ethereum client software. Tang’s research will result in automatic software tools and retrofittable mitigation subsystems. In addition, he and his team are interested in collaborating with the Ethereum developer community to integrate the software artifacts for Ethereum clients.

Four Engineering and Computer Science Faculty Receive NSF CAREER Awards in the 2021-2022 Academic Year

Sara Eftekharnejad, Ferdinando Fioretto, Zhao Qin and Teng Zeng

College of Engineering and Computer Science Professors Sara EftekharnejadFerdinando FiorettoZhao Qin and Teng Zeng received CAREER awards from the National Science Foundation (NSF) Faculty Early Career Development program during the 2021-22 academic year.

The highly competitive NSF Faculty Early Career Development (CAREER) program supports early-career faculty who have the potential to serve as academic role models in research and education and to lead advances in the mission of their department or organization. Activities pursued by early-career faculty should build a firm foundation for a lifetime of leadership in integrating education and research.

Eftekharnejad and Fioretto are members of the Department of Electrical Engineering and Computer Science. Qin and Zeng teach in the Department of Civil and Environmental Engineering.

Eftekharnejad’s project, “Modeling and Quantification of the Interdependent Power Grid Uncertainties,” examines how conditions impact the U.S. electric power grid and looks at developing better methods of predicting grid disruptions. She is using statistical modeling of power grid failures to help predict power outages within rapid timeframes. Another focus is modeling power-generation uncertainties from various types of energy supplies, including those that are weather dependent. She and her team are working on using system measurements of grid status and condition uncertainties to find a dynamic model that adjusts in real time to help predict power outages before they occur.

In his project, “End-to-End Constrained Optimization Learning,” Fioretto is researching new models for solving computer optimization problems by accelerating data-driven learning. In that effort, he and his research team are approximating near-real-time integration of constrained optimization principles into machine learning algorithms. Optimized algorithms can improve an array of computer-based processes used in industrial applications that affect everyday life, such as meeting electricity demands efficiently, matching organ donors with receivers, scheduling flights and finding a nearby driver at a ride-sharing service.

Qin’s project, “Multiscale Mechanics of Mycelium for Lightweight, Strong and Sustainable Composites” seeks to reveal the fundamental principles that govern the multiscale mechanics of mycelium-based composites and integrate research into an educational program. Mycelium, produced during mushroom growth as the main body of fungi, plays an essential role in altering soil chemistry and mechanics, enabling a suitable living environment for different plant species.

Inland lakes in the northeastern United States have shown inconsistent trends of browning, a shift toward darker water color. Many of these lakes also receive inputs of organic contaminants originating from human activities within the lake watersheds. For “Impacts of Lake Browning on the Photochemical Fate of Organic Micropollutants,” Zeng is studying the sunlight-driven transformation of organic contaminants in the context of browning. The project is a collaboration with a volunteer lake monitoring and education program. He plans to develop new data and knowledge that will support development of adaptative lake monitoring programs and water treatment practices.

A total of nine Syracuse University faculty members received CAREER awards during the 2021-22 academic year. This is the largest number of the prestigious NSF awards earned in a single year.

Electrical Engineering and Computer Science Professor Gurdip Singh Appointed as a Divisional Dean at George Mason University

Electrical engineering and computer science professor Gurdip Singh has been appointed divisional dean of the School of Computing at George Mason University. The School of Computing, together with the Volgenau School of Engineering, comprise Mason’s College of Engineering and Computing.

Singh has been on leave from Syracuse University’s College of Engineering and Computer Science (ECS) since March of 2020, serving as division director for the Computer and Information Sciences and Engineering (CISE) Directorate with the National Science Foundation (NSF). As division director, he oversees 27 program officers, 12 administrative staff, and a budget of $240 million. Singh will complete his service with the NSF through the fall semester and will join George Mason on a full-time basis in January 2023.

Prior to serving as CISE division director, Singh served as associate dean for research and graduate programs in ECS, where he strengthened multidisciplinary research in several areas such as unmanned aerial systems, smart cities and energy. He put a specific focus on mentoring early career faculty and led ECS’s effort in the Syracuse University cluster-hire initiative where ECS’s multidisciplinary focus resulted in many faculty positions. Singh also led the formation of graduate professional development program, expansion of recruitment efforts for ECS graduate programs and development of mechanisms to provide timely recruitment data and projections to ECS departments.

Dacheng Ren currently serves as Associate Dean for Research and Graduate Programs in ECS.

“Dr. Singh provided foundations that we have grown to rapidly expand our research in the past two years,” said Ren. “This is a great opportunity for him and all of us at the College of Engineering and Computer Science know he will be very successful.”

Syracuse University’s Center for Sustainable Community Solutions and Environmental Finance Center Announces New Directors

The Syracuse University College of Engineering and Computer Science has announced two new directors at the Center for Sustainable Community Solutions – Environmental Finance Center (CSCS-EFC). Melissa Young takes on the title of director, resource conservation initiatives at CSCS-EFC, while Khristopher Dodson takes on the title of director, water resiliency initiatives. Each director brings more than 15 years of experience managing teams of environmental professionals and are experts in their respective fields of sustainable materials management and water resource management.

As it approaches its 30th year anniversary in 2023, Syracuse University’s CSCS-EFC is poised for growth. Since 1993, CSCS-EFC has used a unique community-based approach to assist hundreds of municipalities across EPA Region 2, which includes New York, New Jersey, Puerto Rico, the U.S. Virgin Islands, and eight Native Nations. CSCS-ESC acts as both a training center and a bridge, bringing together various governmental and nonprofit actors to collaborate on sustainability issues, including water infrastructure management, water equity, climate resiliency, and resource conservation, including waste reduction, reuse, recycling, and sustainable resource management. Since 2015, CSCS-EFC has managed more than $10 million in federal, state and local grants to support its municipal and county government partners.

“We are excited for Syracuse University’s CSCS-EFC to continue growing under the leadership of its two new directors,” says J. Cole Smith, Dean of the College of Engineering and Computer Science. “Our mission includes serving communities by bringing our research and technical abilities to assist in crafting new and innovative solutions. CSCS-EFC is a critical component of how we fulfill that mission. The continued growth of their team reflects the value of how we help empower local leaders to drive change in their communities.”

Melissa Young previously served as an assistant director at CSCS-EFC, where she has worked since 2008. In that role, Young led public engagement, outreach and educational programs, resource development, and technical assistance related to sustainable materials management, including waste reduction, reuse, and recycling. In 2010, she spearheaded development and launch of the Center’s Sustainable Materials Management (SMM) Stewardship program, which to date has engaged hundreds of college students and thousands of K-12 students and teachers across New York, Puerto Rico, and U.S. Virgin Islands, educating them about waste reduction, reuse, recycling, and composting and empowering them to conduct local outreach projects. In 2015, she helped develop the first NYS Organics Summit and helped NYSAR3 receive an Environmental Champion Award from the USEPA for her work co-leading the Re-Clothe NY Campaign. “We are at a critical turning point right now in EPA Region 2,” says Young. “Local leaders and communities are realizing the need and value of transitioning their materials management operations into a system that’s based on waste prevention, resource conservation, the highest and best use of materials, and circular economics, all of which help to benefit the social, environmental, and economic wellbeing of their local communities. I’m proud of the work our team has done in leading sustainable materials management initiatives and I look forward to what we can accomplish as we continue expanding our services in Puerto Rico, the U.S. Virgin Islands, New Jersey, and here in New York State.”

Khris Dodson previously served as an associate director at CSCS-EFC, managing a team of professionals to assist rural communities and other underserved populations on water and wastewater infrastructure challenges, and connecting the Syracuse University EFC with the national EFC network. “As our team continues to grow, we are excited to bring on new talent and find new ways to support our local leaders,” said Dodson. “We are committed to supporting every community in EPA Region 2 with technical assistance and continuing to work with our many national and statewide partners. We recently added new staff with cultural competency to support Native Nations, we’re planning to hire more staff to meet new demand for our services especially on climate resiliency, and we’re evaluating new ways to continue integrating our work with other institutes and academic centers across Syracuse University and at SUNY College of Environmental Science and Forestry, like the Center for Native Peoples and the Environment.”

For both Dodson and Young, key reasons to increase programming include investments at the state and federal levels. At the state level, the NYSDEC has invested more than $6 million towards the new NYS Center for SMM, of which CSCS is a major partner in the development of the center and in conducting all public engagement, education, and outreach activities. At the federal level, the Bipartisan Infrastructure Law (BIL) passed in 2021. Over the next five years, the law will provide the U.S. Environmental Protection Agency with more than $100 billion in funds that can be awarded to states to support clean water infrastructure and climate resiliency. This year in New York State alone, $426 million is available for local municipalities and Native Nations to address climate resiliency and long-overdue upgrades to public infrastructure. “There is a tremendous amount of funding on the table right now,” says Dodson. “Our mission is to work with our partners at EPA and state agencies to make sure underserved communities have the training and skills they need to access new funds. Climate, water, and resource conservation issues are quickly becoming priorities for governments at all levels. The Center for Sustainable Community Solutions here at Syracuse University is well-positioned to convene groups working on these important issues and will ensure that this historic funding is distributed in a way that’s equitable and just.”

Interdisciplinary team of Engineering and Computer Science Students Wins 2022 Invent@SU Competition

When searching a burning building for people who may be trapped inside, smoke and debris can cause firefighters to work in zero visibility conditions. They are attached to ropes but it is easy for them to become disoriented. This makes it difficult to navigate their way back to safety.

Environmental engineering student Oliver Raycroft ’25 heard about the problem from a firefighter during his first year at the College of Engineering and Computer Science and started thinking about ideas.

“I thought the problem was interesting and there was a clear need,” said Raycroft. “I wanted to help and find a solution.”

At the beginning of the six week Invent@SU program, Raycroft presented the problem to his teammates biomedical engineering student Alejandra Lopez ’22 and computer science student Adya Parida ’25. Both were interested in seeing if they could use their science and engineering skills to design a practical solution that would help firefighters orient themselves during rescue operations.

“If we could solve this problem, we could save the lives of firefighters and billions in damages,” said Parida.

During Invent@SU, student teams design, prototype and pitch new inventions with help from engineering and communications faculty. Each student receives a $2200 stipend and teams have a $1000 budget for prototyping materials. Teams spend six weeks developing their ideas during summer session one and each week a panel of Syracuse University alumni and friends evaluate the progress of their five-minute pitches.

“It was a combination of experimentation and feedback. This program taught me skills I can apply anywhere,” said Parida.

“I got better and better at presenting and communicating what we were working on,” said Lopez.

Raycroft, Lopez and Parida developed an initial prototype that would attach to rescue ropes and indicate directionality to firefighters who were working in zero-visibility. As they considered adjustments and materials for their next version, the team brought the initial prototype to the Oswego Fire Department to get their feedback and input.

“The fact firefighters liked it so much made it worth it,” said Parida.

On the final Thursday of the program, all seven teams in Invent@SU pitched their inventions to a panel of alumni judges. Raycroft, Lopez and Parida’s team named “Scale Sense” took first place and a $1500 prize.

Second place went to team “Wonder Walker” who designed a mobility assistance device for children with special needs.

Third place went to team “Silogix” – who designed a device to provide farmers with a way to prevent dangerous grain blockages in silos.

“It was a ride, it was fun, challenging and rewarding,” said Parida.

Several Invent@SU teams plan to work with the Blackstone Launchpad in Bird Library to explore business plans and patents.

Invent@SU was made possible by program sponsors Syracuse University Trustee Bill Allyn G’59 and Janet “Penny” Jones Allyn ’60 and Michael Lazar G’65. The 2022 team sponsors were Matthew Lyons ’86, Haden Land G’91 and Cathy Jo Land and Ralph Folz ’90. For more information on the program, visit invent.syr.edu.

Electrical Engineering and Computer Science Professor Receives Award for Outstanding Research in Privacy Enhancing Technologies

Ferdinando Fioretto

Electrical engineering and computer science Professor Ferdinando Fioretto and his research team received the 2022 Caspar Bowden PET Award for Outstanding Research in Privacy Enhancing Technologies for  their paper “Decision Making with Differential Privacy under the Fairness Lens.”  The award was presented at the annual Proceedings on Privacy Enhancing Technologies Symposium.

The Caspar Bowden PET award is presented annually to researchers whose work makes an outstanding contribution to the theory, design, implementation, or deployment of privacy enhancing technology. The judges said Fioretto’s team received the award for advancing the understanding of differential privacy and fairness trade-offs in decision making, providing a theoretical framework and exploring a highly relevant practical problem.

“I am honored for our work to receive this prestigious award which recognizes influential research in privacy-enhancing technologies, especially for a project that means so much to me and my group,” said Fioretto.

The awarded paper was published in the International Joint Conference of Artificial Intelligence (IJCAI) in 2021. It looks at the role of a privacy-enhancing technology (called differential privacy) in the context of Census data release for decision tasks with profound societal benefits. Some of these benefits may be the allocation of funds and resources, the distribution of therapeutics, or the assignment of congressional seats. Fioretto’s research team showed that differential privacy may induce or exacerbate biases and unfairness in many classes of decision processes and proposed a theoretical framework to audit and bound these fairness impacts.

“I am very honored and humbled to receive this prestigious award. This is one of my favorite projects and it involved a lot of hard work. Our results suggest that the US government might need to consider ethical consequences when applying differential privacy techniques to protect our privacy,” said doctoral student Cuong Tran, who was one of the authors of the paper. “I am also grateful to my advisor, collaborators, friends and staff from the electrical engineering and computer science department for helping us push this work into fruition.” 

One of the main contributions of their work was to examine the roots of the induced unfairness as well as proposing guidelines to mitigate the negative fairness effects of the decision problems studied.

“I am also happy to see that the analysis proposed in our work has inspired a line of follow-up works in the field of privacy-preserving machine learning to understand why private machine learning algorithms may induce or exacerbate disparate impacts,” said Fioretto. “We are continuing our efforts in this area and are currently working with policy-makers to better understand when and how our solutions may be adopted. I am very excited to see how this direction evolves and look forward to the efforts that our community will make to build better tools to address these fairness issues in privacy-preserving processes.”

Civil and Environmental Engineering Professor Zhao Qin Receives NSF CAREER Award to Support Mycelium Research

Professor Zhao Qin

The future of construction materials may exist just inches below the surface of a typical lawn. In between the rocks and soil, a vast microfiber network is constantly assimilating wood chips along with plant waste. You may not see the network building, but you do see what it produces once mature – mushrooms.

“When temperature and humidity produce the right conditions, mushrooms grow out of the mycelium network that has existed beneath the ground,” says civil and environmental engineering Professor Zhao Qin.

Mushrooms

Qin has been researching the structure of mycelium and the potential for it to be used in other adhesive applications. He sees it as an interface between material science, civil engineering and environmental engineering.

“It is like a glue that integrates wood chips and waste material and then assimilate all these pieces together,” says Qin. “Around cliff areas, people are looking to stabilize the soil. Mycelium is doing this all the time.”

Qin received a National Science Foundation (NSF) CAREER Award for his project, “Multiscale Mechanics of Mycelium for Lightweight, Strong and Sustainable Composites.” He seeks to reveal the fundamental principles that govern the multiscale mechanics of mycelium-based composites and integrate research into an educational program. Mycelium, produced during mushroom growth as the main body of fungi, plays an essential role in altering soil chemistry and mechanics, enabling a suitable living environment for different plant species.

He and his research team are building a computational model to show how mycelium blends wood chips and waste into complex microfiber structures.

“Once we have a computational model we can optimize the process,” says Qin. “We plan to generate the culture for Mycelium to grow in the lab. Then we generate conditions like temperature or pressure so we can characterize the strength of the material.”

Eventually, Qin wants to take these natural materials into the lab to see if it can be processed into a composite for infrastructure uses.

“A composite version of mycelium could require less energy to produce and be biocompatible,” says Qin. “It could be used for construction – think about similar properties to medium-density fiberboard  but integrated by a mycelium network rather than an adhesive. We want to see what is possible once we know how the mycelium achieve these mechanical properties.”

Qin says Syracuse University is the perfect environment for his research. He will be collaborating with Professors Daekwon Park and Nina Sharifi from the School of Architecture. Their project was initially funded by a CUSE Grant.

“This is a fantastic research institution. My colleagues here in Engineering and Computer Science and the School of Architecture are very supportive, we have excellent facilities and outstanding graduate students,” says Qin. “Once we set the recipe for these materials, we can apply that to real world applications in construction and architecture.”

“Our department is thrilled to see Dr. Qin’s work recognized by the NSF,” says civil and environmental engineering department chair Andria Costello Staniec. “His work is significant for modeling of bioinspired materials and will contribute to the development of eco-friendly composite materials that have wide applications in civil engineering and beyond.”

As part of the NSF grant, Qin is involving K-12 students in research and also plans to develop an educational exhibit related to mycelium study at the Museum of Science and Technology in downtown Syracuse.

“We will design educational programs that will help aspiring young engineers and scientists to learn by playing,” says Qin.

“Dr. Qin’s research is an outstanding example of the kind of research that ECS seeks to grow,” said College of Engineering and Computer Science Dean J. Cole Smith. “He is showing how to leverage his foundational excellence in science and engineering to construct effective composite materials. Furthermore, he is engaged in deep collaborations with some of our truly fantastic colleagues in the School of Architecture. I am so personally excited to see Dr. Qin recognized for the promising and innovative researcher that he is.”

NIH ESTEEMED Grant to Enhance Diversity and Elevate Undergraduate Research in Bioengineering

Shikha Nangia

After a two-year process spearheaded by biomedical and chemical engineering Professor Shikha Nangia, the College of Engineering and Computer Science (ECS) bioengineering program has been awarded a National Institutes of Health Enhancing Science, Technology, Engineering, and Math Educational Diversity (ESTEEMED) Learning and Discovery through Engineering Research at Syracuse (LEADERS) grant. 

The grant will help fund a program to recruit and train undergraduates from diverse racial and ethnic minorities, people with disabilities, and individuals from disadvantaged backgrounds. 

“It’s about enriching diversity in our undergraduate student population,” said Nangia. “This is a carefully designed program to mentor students while improving diversity in our bioengineering program.”

ESTEEMED funding will enable students to be trained in research beginning in their first year and be paid for that research. The program is distinctly designed to consider what students may need from the start. It will include a six-week summer bridge program to help students transition from high school to their first year in college. The students will be supported for research in their second year and transition into the university’s Honors program. The long-term vision is to have a lasting impact by increasing diversity in graduate programs and eventually in bioengineering-related professions.

“This is close to my heart. We want to reach out to students from diverse and disadvantaged backgrounds, meet them where they are, and nurture their talent through a deliberate and focused approach,” said Nangia. 

Nangia says she is grateful to co-investigator and chair of the department of biomedical and chemical engineering, Julie Hasenwinkel, and director of the honors program, Danielle Smith, for working on developing the LEADERS program. Nangia also is grateful for the support of ECS leadership. 

“I want to thank Dean Smith and associate dean for research and graduate programs Dacheng Ren for their support to this program in making our proposal competitive for NIH funding,” said Nangia. 

“When Shikha approached me about this opportunity I was inspired by her passion and vision for the ESTEEMED LEADERS program. I have seen the power of cohort-based programs that focus on mentorship and student success from previous work that I did as associate dean in ECS,” said Hasenwinkel. “I’m very excited to leverage that experience and to work with Shikha and Danielle on this project that is aimed at enhancing the diversity, inclusion, and success of undergraduate students in bioengineering.”

Spring 2022 Engineering and Computer Science Dean’s List

Syracuse University Campus

In recognition of superior scholarship, the following students have been entered on the Engineering & Computer Science Dean’s List for Spring 2022.

To be eligible for Dean’s List recognition, the minimum semester grade point average must be 3.40 or higher, must have earned a minimum of 12 graded credits and must have no missing or incomplete grades.

Aerospace Engineering

Allyson Almeida

Brady Arruda

Curtis Cline

Bryan Collins

Nicholas Crane

Brian Cronin

Christopher Doherty

Michael Donato

Sean Edelman

Nadia Elsaeidy

Benjamin Faasse

Christian Fitzgerald

Victoria Forsyth

Benjamin Gerard

Alexandre Gill

Jacob Gomez

Zachary Haas

David Hadley

Alyssa Henley

Aidan Hoff

Paula Ibelings

Nicholas Jacobs

Joseph Javier

Sydney Jud

Benjamin Kane

Harrison Kayton

Trevor Knight

Isaac Lehigh

Stephen Leung

Emma Levenson

Maximillian Lipinski

Jacob Long

Powers Lynch

Brendan Marquis

Noah Martel

Elsa Martin

Jonathan Martin

Maxwell Martin

William Martin

Jason McElhinney

Mariana McManus

Parker McMillan

Alexander Metcalf

Romeo Michelson

John Michinko

Kendra Miller

Evan Moore

Matthew Murino

Mark Namatsaliuk

Tatiyyanah Nelums

Randall Osborn

David Pham

Madeline Phelan

Logan Prye

Matthew Qualters

Mykhaylo Rafalskyy

Samantha Riedel

Brandon Riley

Tracey Rochette

Alyssa Rote

Daniela Ruano-Pinos

Gregory Ruef

Michael Saksa

William Saueressig

Fred Schaffer

Winston Schaumloffel

Justine John Serdoncillo

Kanya Shah

Vraj Shah

Prabha Singh

Gregory Slodysko Jr

Zachary Stahl

Christopher Stawarski

Ethan Stocum

Yiyuan Sun

Marco Svolinsky

Tiffany Tang

Anthony Tricarico

Cody VanNostrand

Diego Villegas

Mason Weber

Timothy Wiley

Kana Wong

Cameron Woodbury

Melissa Yeung

Bioengineering

Anthony Acierto

Ashraf Alnatour

Bianca Andrada

Jason Bae

Eric Benaroch

Colby Black

Anna Brunson

Zeynep Cakmak

Britnie Carpentier

Lukas Cook

Tessa Decicco

Mia-Marie Fields

Tessa Galipeau

Jennifer Gonzalez

Skyla Gordon

Jenna Grutzmacher

Grace Haas

Lauren Hamilton

Victoria Hathaway

Brenna Henderson

Madeline Jones

Gabriel Khan

Jakub Kochanowski

Emily Labour

Quinn Langdon

Sara Leonardo

Isabelle Lewis

Alejandra Lopez

Ethan Masters

Aidan McCarthy

Aelish McGivney

Ian McHugh

Caitlin Mehl

Lindy Melegari

Katherine Monroe

Hannah Murphy

Alexander Musselman

Jonathan Ngo

Mark Nicola

Nicole Nielsen

Kerrin O’Grady

Mia Paynton

Megan Perlman

Connor Preston

Michael Presunka

Mark Ransbottom

Lillian Rhuda

Isabella Rosales

Brandon Salazar

Amira Salihovic

Juliana Sepulveda

Bridget Sides

Katherine Southard

Justin Stock

Elizabeth Su

Kimberly Tlayaca

Zhuoqi Tong

Danny Vu

Nathaniel Wellington

Maximillian Wilderman

Haven Wittmann

Lauren Woodford

Rui Xie

Julian Zorn

Samantha Zysk

Chemical Engineering

Daud Abdullayev

Paige Adebo

Lilly Basgall

Sandy Cao

Karley Chambers

Dennis Dao

Gabriela Duarte Saadia

Samantha Esparza

Emily Fittante

Edward Fluker

Mia Goldberg

Brent Gosselin

Avery Gunderson

Christopher Hansen

Oduduabasi Isaiah

Aiden Jacobs

Natalia Jarmain

Hope Johnson

Sonia Julius

Sayf Karim

Laxmi Khatiwada

Adam Klinger

Simran Dharmendra Lakhani

Caroline Leduc

Steven M Axelsen

Haonan Ma

Rawia F A M Marafi

Annika Meyers

Erin Odonnell

Sean O’Toole

Eli Paster

Fabiana Perez

Isabella Perkins

Nora Prosak

Riley Schmerber

Jacob Shellhamer

Jason Tan

Elizabeth Wall

Murphy Waters

Jackson Yuen

Civil Engineering

Shalom Acheampong

Juan Pablo Arosemena Graziadei

Maxwell Bell

Lucas Bellandi

Henry Bievenue

Ryan Bourdeau

Shalamar Brown

Alycia Bruce

Masson Bruening

Brett Carney

Vanessa Chica

Alejandro Correa

Aymeric Destree

Brendan Dwyer

Jack Dwyer

Marlee Ecton

Maraea Garcia

Matthew Hauser

Julia Johnson-Milstein

Joshua Kaufman

Kate Kemnitz

Alexander Klee

Adam Landry

Evangelia Larson

Abigail Laschalt

Haben Legesse

Emma Liptrap

Emilija Lizins

John Mazza

Jessica McGowan

Lucas Meiers

Sumit Mistry

Salma Mohamed

Amira Mouline

Trevor Napoli

Marissa Nicole

Jenifer Pena

Joseph Penta

Brian Perez

Justin Pettit

John Pham

Maxwell Pozar

Gabriel Prepetit

Anthony Privitera

Benjamin Putrino

Kaylin Richards

Cassie Saracino

Ethan Schulz

Aaron Shinn

Caitlin Spillane

Erin Splaine

Jose Venegas

Christian Viola

Christian Ward

Angelina Wong

Isabelle Wong

Paige Yamane

Charles Zeitoune

Garrett Zito

Computer Engineering

Adekunle Akinshola

Chikeluba Anierobi

Graciela Avila

Jackson Bradley

Collin Chamberlain

Dynasty Chance

Ibrahima Diallo

Lyn El Sayed Kassem

Melvin Escobar Gonzalez

Xavier Evans

Elizabeth Fatade

Delaney Glassford

Aidan Harrington

Ethan Hensley

Kasey Jackson

Mehak Jetly

Virkin Jimenez

Fundi Juriasi

Bikash Khatiwoda

Jessica Lat

Tyler Lavaway

Matthew Leight

Jiaxiong Li

Kyle Maiorana

Aksel Malatak

Jacob Masrouri

Jas Moreno

Benjamin Murray

Pierce Neubert

Jose Olivera

Jessica Reslan

Anel Rizvic

Samuel Rosenthal

Hongyi Ruan

Mia Russo

Hanna Salem

Alexander Segarra

Ryan Wolff

Renjie Xu

Andy Zheng

Computer Science

Aaron Alakkadan

Sajjad Albadri

Huda Ali

Christian Alves-Patterson

Garret Babick

Julia Barucky

Samantha Bastien

Anas Benhamida

Luke Bonenberger

Joshua Boucher

Brian Bourne

Ella Brink

Brandon Brushwyler

Bryan Bueno Reyes

Bryce Cable

Liam Calnan

Omar Camara

Megan Campbell

Benjamin Canfield

Jackie Chen

Lawrence Chen

Siyu Chen

Yixing Chen

Daniel Chmielewski

Season Chowdhury

Konstantinos Chrysoulas

Bram Corregan

Miguel Cruz Flores

Matthew Cufari

Ryan Czirr

Salvatore DeDona

Aidan DeGooyer

Alpha Diallo

Lucille Disalvo

Christopher Edmonds

Georges Elizee

Yassin Elsharafi

Ryan Elsinga

Matthew Faiola

Xueyan Feng

Bennett Ferrari

Lucas Fox

Mason Freer

Ruihong Gao

Brianna Gillfillian

Justin Gluska

John Gorman

Alexander Haas

Athanasios Hadjidimoulas

Talal Hakki

Ashley Hamilton

Jillian Handrahan

Liam Hannah

Nicholas Hoffis

Laurel Howell

Jacob Howlett

Xuanye Huang

Chengyi Jiang

Tianyiming Jing

Frederick Jones

Michael Jones

Alan Jos

Xiaoya Kang

Aarya Kaphley

Henry Katchuba

Matthew Keenan

Ekaterina Kladova

Polina Kozyreva

Gaeun Lee

Janet Lee

Justin Lee

Andy Li

Jiashu Li

Rick Li

Yuxuan Li

Daniel Lim

Haochen Lin

Sandy Lin

Zekai Lin

Huangjin Liu

Jiaming Liu

Joshua Liu

Yiheng Lu

Runzhi Ma

Gavin Macisaac

Andrew Markarian

Konnor Mascara

Kanoa Matton

Ryan May

Anthony Mazzacane

Matthew McDaniels

Noah Mechnig-Giordano

Jose Mendoza

Philip Moceri

Thomas Montfort

Jacob Morrison

Jovanni Mosca

Ryan Murphy

Zoe Neale

Christopher Nemeth Jr

Jillienne Ness

Arianna Nguyen

Cheryl Olanga

Carlyn O’Leary

Marissa Orsley

Daniel Pae

William Palin

Xiaofeng Pan

Michael Panighetti

Adya Aditi Parida

Brian Pellegrino

Carlo Pisacane

Daniel Pomerantz

Fiona Powers Beggs

Cheng Qiu

Shane Race

Christopher Rhodes

Eric Rodriguez

Sadikshya Sanjel

Jack Schmidt

William Seeley

Huahao Shang

Nolan Shepherd

Chad Smith

Jeremy Stabile

Kevin Sullivan

Cheng Yu Sung

Nicholas Sweet

Rae Tasker

Dylan Teare

Emmanuel Teferra

Jonathan Thomas

Eduardo Torres-Garcia

Brendan Treloar

Winston Tsui

Randy Vargas

Kevin Verdeschi

Kritika Verma

Bermalyn Maricel Vicente

Christopher Vinciguerra

Ruobing Wang

Xinyi Wang

Zijian Wang

Robert Ward

Jack Willis

Nolan Willis

Brian Wong

Ethan Wong

Tianyi Xiang

Zhuoyi Xiong

Yujie Xu

Jishuo Yang

Yongcan Yang

Stella Yaunches

Elin Yaworski

Yulun Zeng

Liaotianbao Zhang

Mingyan Zhang

Ruihao Zhang

Weiwei Zhang

Junjie Zheng

Liuyu Zhou

Xinqian Zhou

Yitao Zhou

Joseph Zoll

Engineering Undeclared

Luke Lybarger

Kathleen Meleski

James Peden

Emily Schiessl

Electrical Engineering

Minghao Ai

Mohammed Aljohani

Tianle Bu

Kevin Buciak

Wyatt Bush

Yushang Cai

Arianna Cameron

Leshui Chen

Nicholas Connolly

Kevin Donnelly

Henry Duisberg

Randy Galicia

Jose Ginorio

Jemma Mallia

Tyler Marston

Ryan Mussaw

Zixun Nian Nian

Jayson Okhman

Dylan Palmer

Julia Pepin

Matthew Piciocchi

Savion Pollard

Gilberto Ruiz

Gabriel Ruoff

Luis Santin

Jenna Stapleton

Jared Welch

Environmental Engineering

Elexis Jean Bishop

David Brodsky

Benjamin Cavarra

Ananya Chandra

Bessie Chen

Emma Crandall

Eric Fitzgerald

Eleanor Gettens

Allyson Greenberg

Brady Hartnett

Christopher Harvey

Joshua Higgins

Nicholas Kohl

Audrey Liebhaber

Samuel Livingston

Henry Long

Molly Matheson

Matthew Nosalek

Andrew O’Gorman

Ella Phipps

Scott Potter

Joshua Prygon

Oliver Raycroft

Mary Schieman

Noah Sherman

Husna Tunje

Jacob Tyler

Andrew Vanderwege

Maria Antonia Villegas Botero

Emily Vogel

Anna Wojcik

Qiuyu Zhou

Reilly Zink

Mechanical Engineering

Owyn Adams

Richard Andrews

Joshua Arndt

Timothy Arnold

Charles Ball

Erin Beaudoin

Aidan Bergman

Jeffrey Bernstein

Chloe Britton Naime

Brinley Bruening

Arnaud Buard

Alexander Callo

Joseph Capra

Graham Chapman

Talina Chipantiza

Artur Chuvik

Caroline D’Addio

Peter Daniels

Ryan Dileo

Madeline Doyle

Luyen Duong

Griffin Estes

Thomas Fabiano

Charles Germosen

Samuel Getman

Kara Gorman

Laura Graziosi

Jiayuan Huang

Vian Vishal Jain

Jagger Kachmaryk

Finnian Kery

Teagan Kilian

Justin Kohan

Deanna Koppenjan

Trevor Kroells

Harrison Liberto

Cameron Lotfi

Honorata Lubecka

Bei Luo

Lauren Mack

Kalhaku McLester

James Melitski

Leilah Miller

Pablo Morales

Nicholas Papaleo

Nathaniel Paradis

Corey Phung

Nicholas Piano

Scott Reyes

Aidan Riederich

Jasmine Rodriguez

Jeremy Rosh

Nitish Satpute

Justin Sauve

Eric Silfies

Dionysios Skaltsas

Nathaniel Slabaugh

Samuel Slaiby

Ian Storrs

Matthew Swanson

Ethan Tracey

Evan Tulsky

Alexandra Vaida

Nicholas Valentin

Griffin Vollers

Michael Wehrle

Taj Whitney

Michael Wong

Systems & Information Science

Connor Gurnham

Stacy Kim

Sophomore Emma Liptrap Named a 2022 NOAA-Hollings Scholar

Emma Liptrap

Emma Liptrap’s passion for environmental engineering began in a parking lot.

In her junior year of high school, she set up a shadowing experience with a local engineering firm in her hometown of Salem, New Hampshire. Engineers brought her to a parking lot they were redesigning to mitigate stormwater runoff. They explained how water from large storms can become polluted from deposits on the ground and then flow directly into the nearby river.

“I had never thought much about parking lots or impervious surfaces before my shadowing experience, but after learning about their relationship to pollution and flooding I became fascinated—and committed—to learning more about stormwater management,” Liptrap says

Liptrap, a sophomore civil engineering major in the College of Engineering and Computer Science (ECS) and member of the Renée Crown University Honors Program, is a recipient of a 2022 National Oceanic and Atmospheric Administration (NOAA) Ernest F. Hollings Undergraduate Scholarship, which will help support her studies.

Named for Sen. Ernest “Fritz” Hollings of South Carolina, the prestigious award provides tuition support ($9,500 per year) and paid summer internships with NOAA to recipients. The award is designed to support students working in areas related to NOAA’s programs and mission. Students apply as sophomores, do an internship in their junior year, and receive support and mentorship throughout their undergraduate career.

In high school, Liptrap began her environmental and stormwater work by creating a sustainability club. In the first year, she gave presentations about water conservation to elementary school students, organized trash pickups at local parks, distributed water barrels to town residents and led a project planting a garden at a local park to promote wildlife.

She also worked as an intern with an architect who prioritized reusing materials and building for the future. “I loved learning about LEED certification and analyzing how we could make each build more sustainable,” she says. In her senior year, she won the New Hampshire Department of Education’s Work-Based Learning Award for her work in the internship.

Liptrap enrolled at Syracuse because of the University’s civil and environmental engineering program, SOURCE undergraduate research funding program and research focus on the smart management of water systems. “I had also read about how Onondaga Lake used to be one of the most polluted lakes in the country, and the opportunity to learn more about how it is being restored excited me,” she says.

Her coursework involves technical engineering classes along with classes in social sciences to broaden her understanding of climate change. “Through my classes, it has been made clear to me that the work I will do in the future will require cooperation with many stakeholders, including scientists, policymakers and the public. I understand how crucial effective communication will be throughout my career and am developing those skills by learning how to give presentations and engaging in team projects,” she says.

Liptrap is working in the research lab of Cliff Davidson, Thomas and Colleen Wilmot Professor of Engineering in ECS. She is engaged in research using HYDRUS, a computer program that models the movement of water at different levels of saturation. The research is done on the 60,000-square-foot green roof of the Onondaga County Convention Center (ONCenter) in Syracuse, studying its capacity to prevent stormwater from overflowing Syracuse’s combined sewer system.

“Having a reliable program like HYDRUS to model stormwater runoff will help engineers designing green roofs in the future so that they can be built to fit an area’s specific needs,” Liptrap says.

Liptrap also joined the University’s Water Chemistry lab last summer, focusing on determining the rate at which pollutants in the air settle on surfaces in Syracuse. “This project will help provide a blueprint for how to measure dry deposition in urban environments so that these pollutants can be better studied in cities,” she says.

She currently serves as outreach chair for the University’s student chapter of the American Society of Civil Engineers. She is also a member of Engineering Ambassadors, a club that facilitates engineering projects for middle school students to introduce them to key engineering concepts.

In the future, Liptrap wants to design and implement green infrastructure in cities as a civil engineer with a private consulting firm. “Many cities across the United States have plans to become more sustainable, and water management through green infrastructure will be crucial to this work,” she says. “The Hollings Scholarship’s mentorship and internship opportunities will be invaluable in helping me better understand the state of the field and explore career paths.”

Liptrap worked with the Center for Fellowship and Scholarship Advising (CFSA) to apply for the NOAA scholarship. CFSA offers candidates advising and assistance with applications and interview preparation for nationally competitive scholarships. “Emma’s sustained focus on environmental issues, and her specific interest in managing stormwater runoff, made her a terrific candidate for the NOAA-Hollings Scholarship. Her interests and goals are clearly aligned with NOAA’s mission,” says Jolynn Parker, director of CFSA. “We’re thrilled she’s won this award and will benefit from mentorship and internship opportunities through NOAA.”

The 2023 NOAA-Hollings Scholarship application will open in September Interested students should contact CFSA for more information: 315.443.2759 or cfsa@syr.edu.

Biomedical and Chemical Engineering Professor Mary Beth Monroe’s Research Team Receives Multiple Awards at the 2022 Society for Biomaterials Conference

Biomedical and chemical engineering Professor Mary Beth Monroe attended the Society for Biomaterials (SFB) 2022 meeting in Baltimore with Ph.D. students Anand Vakil, Henry Beaman, Changling Du, Maryam Ramezani, master’s student Natalie Petryk ’21, G’22 and undergraduate students Caitlyn Greene ‘22, Grace Haas ‘23, and Avery Gunderson ‘23. This national conference included over 850 presentations from all over the world. The Monroe lab’s research abstracts and presentations were recognized in several competitions that took place during the conference, highlighting the excellent biomaterials work at Syracuse University.

Henry Beaman Receives a Ph.D. Student Award for Outstanding Research

Student Award for Outstanding Research: This is the highest student award that SFB gives, recognizing student researchers who have shown outstanding achievement in biomaterials research. Henry Beaman, a 4th year Ph.D. student, was one of two students selected in the Ph.D. student category. He was recognized for his work on shape memory polymer hydrogel foams with cell-responsive degradation mechanisms for Crohn’s fistula filling. Natalie Petryk was selected in the master’s student category. She was recognized for her work on tuning the interconnectivity of shape memory polymer foams using off-the-shelf foaming agents. Published manuscripts from both projects are featured in a special issue of the Journal of Biomedical Materials Research.

Natalie Petryk Receives an Master’s Student Award for Outstanding Research

Student Travel Achievement Recognition (STAR) Award: STAR awardees are selected based on abstracts by each Special Interest Group (SIG) within SFB to recognize research excellence with an aim of developing future leaders within SFB. Out of >850 abstracts, there are 25 STAR awardees and 25 STAR honorable mentions. Maryam Ramezani, a 3rd year Ph.D. student, received a STAR award based on her research on bacteria-responsive shape memory polymers. Caitlyn Greene, a senior undergraduate, received honorable mention based on her work on incorporating antimicrobial phenolic acids into shape memory polymer hydrogels.

Dr. Rena Bizios Poster Award: This award program honors Rena Bizios, a founding and active member of the BIoInterfaces SIG.  These awards recognize outstanding BioInterfaces research by graduate students. Anand Vakil, a 4th year Ph.D. student, received first place based on his work on temporally-controlled drug release from shape memory polymers. Natalie Petryk won second place in the competition based on her research on tuning foam interconnectivity.

Biomaterials Education Challenge: This competition involves presenting a poster with an educational module that is designed for middle school students. The objectives are to

  • Improve widespread understanding of biomaterials-related science and careers in the middle school population.
  • To encourage SFB student chapters to participate in K-8 outreach efforts.
  • Reward the communication skills and creativity of the next generation of biomaterials researchers and educators.

As representatives of the Syracuse University SFB student chapter, Maryam Ramezani and Anand Vakil earned 1st place in this competition for their presentation on using cakes to teach concepts about polymers and foam fabrication. This award provides $1,500 for our student chapter to use for further development of outreach activities.

Biomedical and Chemical Engineering Student Spotlight: Zhuoqi Tong G’22

Zhuoqi Tong is the 2022 Recipient of the Louis N. DeMartini Award for Outstanding Research.

Hometown:

Xuzhou, China

BMCE/ECS/other activities you have been involved with:

I have been an Academic Excellence Workshop Facilitator and the president of the BMES Chapter at SU. I’m also in the Math Club as well as serving as a student panelist on the Academic Integrity hearing panels. I also play bassoon in the Syracuse University Symphony Orchestra.

Favorite thing about BMCE:

My favorite thing about BMCE is all of the support I’ve received from faculty and friends in the department.

Favorite thing about SU:

My favorite thing about SU is the vast range of opportunities that exist to enrich my academics.

Plan after graduation:

I will pursue my PhD in Biomedical Engineering at The Georgia Institute of Technology, likely specializing in the subfield of immunoengineering.

Biomedical and Chemical Engineering Spotlight: Bianca Andrada ’22

Bianca Andrada is the 2022 Recipient of the Bioengineering Founders Award.

Hometown:

New York City

BMCE/ECS/other activities you have been involved with:

  • Dr. Pranav Soman Research Lab
  • President of Engineering World Health
  • President of Kappa Phi Lambda Sorority, Inc.
  • 3+ Resident Advisor for Engineering and Computer Science Living Learning Community
  • Honorable Mention Recipient for Invent@SU
  • TA for Invent@SU Summer 2022
  • Engineering Excelerators
  • Tau Beta Pi – The Engineering Honor Society
  • Mentor Biomedical Engineering Society
  • Food Recovery Network
  • Guest Services – Barnes Center at the Arch Recreation

Favorite thing about BMCE:

My favorite thing about BMCE are the faculty and staff. They have all been supportive of my interests, passions, and they ensured that my studies revolve around them. For instance, I expressed my curiosity in CAD Design to Dr. Yung. He was able to connect me with the Industrial and Interaction Design School so I can bridge together my interest in design and engineering.

Favorite thing about Syracuse University:

On the engineering side, I had the opportunity to be a part of a multitude of projects that provided opportunities to prove to individuals my depth, understanding, and skillset in biomedical engineering. On the social side, I love going to the Basketball Games with my friends. 

Plan after graduation:

After graduation, I will be obtaining a Master of Science in Robotics and Autonomous System at Boston University. My focus will be in medical and soft robotics.

Biomedical and Chemical Engineering Student Spotlight: Madeline Jones ’23

Biomedical and Chemical Engineering student Madeline Jones was selected as a College Marshall for the Class of 2023.

Hometown: 

Bristow, Virginia

BMCE/ECS/other activities you have been involved with:

Tutoring in ECS 221 (statics) and MAT 296 (calculus 2), Biomedical Engineering Society, Society of Women Engineers, Tau Beta Pi honors society

Favorite thing about BMCE:

I love how biomedical engineering has a wide variety of career opportunities and you have the ability to change peoples lives.

Favorite thing about SU:

I love the community Syracuse has created. You can never go anywhere without seeing at least one person you know.

Plan after graduation:

Go to graduate school to pursue an MS/PhD so I can do bench-to-bedside biomedical engineering research as a medical scientist with a focus in regenerative medicine.

Biomedical and Chemical Engineering Graduate Student Francielli Silva Genier Receives Chancellor’s Citation for Excellence in Student Research

Francielli Genier

Biomedical and Chemical Engineering Ph.D. student Francielli Silva Genier received a Chancellor’s Citation for Excellence in the category of Excellence in Student Research (Graduate).

The award seeks to recognize members of the University community who have made invaluable contributions through commitment to scholarship and research that fosters new understandings of the world and creative responses to its needs.

Genier’s research focuses on next-generation batteries. Renewable energy, such as wind and solar, highly demands efficient batteries that can be available when the conditions are not ideal for energy conversion. Her research with Professor Ian Hosein aims to improve batteries by substituting the solvents in traditional devices for polymer electrolytes, creating safer batteries with high energy density. They are also studying sodium-ion batteries due to sodium’s high availability compared to lithium’s and lower cost. 

“The Department of Biomedical and Chemical Engineering is exceptionally proud of Fran,” said Biomedical and Chemical Engineering Department Chair Julie Hasenwinkel. “She is an outstanding choice for the Chancellor’s Citation for Excellence in Student Research. Fran’s work on next generation battery technology is highly innovative and has the potential for broad impact in the field of renewable energy.”

Kirthiga Reddy G’95 Announced as 2022 College of Engineering and Computer Science Convocation Keynote Speaker

Kirthiga Reddy G’95 has many firsts to her credit. She was the first female investing partner at SoftBank Vision Fund, the first employee for Facebook in India & their Managing Director for Facebook India & South Asia. She is currently the president of Athena Technology II SPAC and a founding investment partner for f7 Ventures. She is on the Board of WeWork and Pear Therapeutics. Reddy received a master’s degree in Computer Engineering in 1995 and the College of Engineering and Computer Science is proud to announce she will be the keynote speaker at the College’s 2022 Convocation on May 14th.

Reddy brings over twenty years of experience leading technology-driven transformations. She is driven by the mantra “When businesses succeed, livelihoods flourish.”

Athena Technology II is an all-women-led SPAC (Special Purpose Acquisition Company) which brings talent and transaction experience to enable access to equity capital markets. The f7 Seed Fund’s mission is “Bold Women Investing in Bold Ventures.” Previously, Reddy was the Investment Partner at SoftBank Investment Advisers, manager of the $100B+ SoftBank Vision Fund where she led a portfolio of $5 Billion-plus. Her focus was fast evolving sectors like quantum computing, additive manufacturing, enterprise, health tech, gaming and crypto. She served on the investment committee of Softbank’s Emerge Program, a global accelerator to provide funding, tools and networks for top companies led by underrepresented founders.

Prior to SBIA, she was the Managing Director of Facebook India and South Asia for over six years, starting as their first employee in India. She started one of the global operations offices that now serves over 3.5B people. She grew the India business to several $100Ms of annual revenue and got investment buy-in for the vision of $1B. Her subsequent experiences at Facebook focused on emerging and high-growth markets including Mexico, Brazil, Indonesia, South Africa and the Middle East.

Reddy is a passionate supporter of Syracuse University’s College of Engineering and Computer Science. She has been an active member of the Dean’s Leadership Council since 2018 and is a member of SU’s Hill Society, a dedicated network of leadership annual donors who share a common goal of supporting Syracuse University’s highest priorities.

The newly established Kirthiga Reddy Graduate Scholarship Fund provides financial assistance to ECS graduate students.

She holds an MBA from Stanford University, where she graduated with highest honors as an Arjay Miller Scholar and has served as Chair of the Stanford Business School Management Board. She acquired her B.E. in Computer Science and Engineering from Marathwada University, India. She has been recognized as Fortune India’s “Most Powerful Women” and as Fast Company’s “Most Creative People in Business” among other recognitions. Her upcoming book, The Opportunity Engine, is about building high-growth, sustainable businesses.

Mechanical and Aerospace Engineering Professor Mark Glauser Receives Chancellor’s Citation Lifetime Achievement Award

Mechanical and Aerospace Engineering Professor Mark Glauser was selected to receive a Chancellor’s Citation for Excellence Award for Lifetime Achievement.

Glauser has published more than 180 peer-reviewed publications and conference proceedings and has presented more than 100 invited presentations and keynote talks worldwide. Over the past 30 years he has mentored several post-doctoral researchers and more than 45 Ph.D. and MS students along with many Research Experiences for Undergraduates (REU) students in his lab.  Glauser served as Associate Dean for Research and Doctoral Programs within the College of Engineering and Computer Science from 2008 to 2016 and was responsible for overseeing the college’s research activities and coordinating the development of its future research portfolio.

“It has been my privilege to be a professor for 35 years and to engage with so many talented students and post docs from diverse backgrounds,” said Glauser. “They have contributed so much to my success and I thank all of them. Performing scholarship jointly with them has enriched me and been most rewarding.’’ 

“Dr. Glauser has been a leader for the College of Engineering and Computer Science at every level. I have especially seen in my time here the great lengths that Dr. Glauser has gone to in mentoring students, staff and faculty, and making them feel a part of the Syracuse University family,” said J. Cole Smith, Dean of the College of Engineering and Computer Science.  “This award is a worthy recognition of his dedication to his students, STEM education and groundbreaking research.”

Glauser was a Posse Foundation Mentor to the City of Miami First Posse at Syracuse University from 2012 to 2016. He served for many years on the Syracuse University Remembrance Scholar Selection Committee and chaired the committee from 2012 – 2015.  In 2008 he was a recipient of Syracuse University Chancellor’s Citation for Excellence in Research and Scholarship. 

His external service includes serving as an Army Science Board Member, Special Government Employee from March 2013 to February 2021. He has been twice awarded the Meritorious Civilian Service Medal (2020, 2021), for this service. Glauser currently serves as a National Academies Review team study member tasked with reviewing Army Propulsion Research and Development at the Army Research Labs.

Glauser is a Fellow of the American Institute of Aeronautics and Astronautics, the American Society of Mechanical Engineers, the American Physical Society and the UK Institute of Physics.  In 1995 he was a Fulbright Scholar in Poitiers, France.

Biomedical and Chemical Engineering Student Spotlight: Laxmi Khatiwada ’22

Laxmi Khatiwada received the 2022 Outstanding Achievement Award in Chemical Engineering

Hometown:

Syracuse, NY

BMCE/ECS/other activities you have been involved with:

Academic Excellence Workshop Facilitator and member of American Institute of Chemical Engineers

Favorite thing about BMCE:

The faculty members are very approachable and foster a friendly environment.

Favorite thing about SU:

The university has many opportunities and is close to home.

Plan after graduation:

Work in the industry for few years and pursue my graduate degree afterwards.

Civil and Environmental Engineering Alumni Profile: Janea D. Russell ’08

As she helps solve some of the most challenging environmental hurdles for transportation infrastructure projects in Southern California, the lessons she learned at Syracuse University are often on the mind of Janea D. Russell ’08. She sees her time as a civil engineering student in the College of Engineering and Computer Science as the reason she has been able to thrive personally and professionally as a principle civil engineering assistant for the County of Los Angeles.

Russell has great memories of her first year in Syracuse and appreciates the guidance she received from civil and environmental engineering Professor Sam Clemence.

“My experiences really helped me to problem solve – to look at the root of an issue and tackle it,” says Russell.

Now Russell works on some of the most important environmental challenges for infrastructure projects in the Los Angeles County area. She is grateful not only for the engineering education she received at Syracuse University but also the connections she made across campus with friends and professors in the other schools and colleges.

“My background has helped me consider engineering challenges from different perspectives,” said Russell. “We look at the effects a project may have on everything around it. From sensitive flora and fauna to broader societal impacts.”

She recommends current students find ways to get involved, take advantage of all the social activities on campus and be a part of the larger Syracuse University community.

“Most of the people I am closest to now, I met at Syracuse,” says Russell.

Biomedical and Chemical Engineering Student Profile: Maximillian Wilderman ’22

Maximillian Wilderman ’22 was the 2022 Recipient of the ECS Alumni Association Service Award.

Hometown:

Incline Village, NV

BMCE/ECS/other activities you have been involved with:

I’ve been involved with research in Dr. Soman’s lab, Engineering Ambassadors (current Program Coordinator), Biomedical Engineering Society, SUVO (current Vice President), and Excelerators.

Favorite thing about BMCE:

My favorite thing about BMCE is how accessible the department engages undergraduate students in research. I have gained so many out of class skills through research and have learned so much from my mentors.

Favorite thing about SU:

I would say the number of opportunities the university has to offer for its students. Ever since I stepped onto this campus, I wanted to take up every opportunity I could get and have learned something about myself after each one.

Plan after graduation:

After graduation, I will be returning to Syracuse for my masters in Bioengineering.

Biomedical and Chemical Engineering Graduate Student Profile: Francielli Genier

Francielli Genier received the 2022 Outstanding Graduate Student in Chemical Engineering Award.

Hometown:

Vitoria-ES, Brazil

BMCE/ECS/other activities you have been involved with:

WiSE women in STEM

Mentor of WiSE women of color in STEM program

E-board of Black Graduate Student Association (BGSA)

Favorite thing about BMCE:

Friendly environment among faculty and students.

Favorite thing about SU:

How alive the quad feels on spring days.

Plan after graduation:

Industry position in material science and engineering.

Electrical Engineering and Computer Science Professor Sara Eftekharnejad Receives National Science Foundation (NSF) CAREER Award

For a network that powers the country, the United States electric grid is increasingly fragile. Millions of people, households and industries rely on the grid’s ability to balance the supply and demand for energy but extreme weather events and challenges predicting renewable energy generation levels have put significant pressure on it. Grid failures like the one that happened in Texas in 2021 can affect millions of people.

“The only way to prevent cascading outages is to better predict them,” said electrical engineering and computer science Professor Sara Eftekharnejad. “If we can predict the most probable grid failures then mitigative actions could be taken to prevent those failures .”

Eftekharnejad received an NSF CAREER Award to research the impacts of the uncertainties within the electric power grid and develop enhanced methods to predict disruptions. Her research will focus on two main areas –

  1. Statistical modeling for power grid failures that are often caused by severe weather and interconnectivity issues.
  2. Modeling the generation uncertainties, particularly as more power is generated by renewables that depend on weather conditions like wind and solar.

The two are separate issues but can also come together to cause significant problems.

“Generation and outages are interdependent. If there is an unforeseen shortage of renewable power generation, that could potentially lead to outages. Similarly, severe outages could disconnect the distributed renewable generation resources from the grid” said Eftekharnejad. “If the grid operators are aware of the impending failures considering these uncertainties, they can take actions that prevent large-scale blackouts.”

To better predict power generation uncertainties and outages across the more than 7,000 power plants and 2.7 million miles of power lines that make up the United States power grid, Eftekharnejad and her research team will develop statistical predictive models.

“When outages cascade, it can affect millions of people. We are trying to develop better methods to estimate the probabilities of outages considering the uncertainties of the available generation resources,” said Eftekharnejad. “We are going to find a way to quantify the uncertainties using large-scale data and machine learning methods.”

Using historical or synthetic data, they will develop statistical models for outage predictions over hundreds of power lines.

“We are looking for a dynamic model that can adjust in real time. The model would learn from the system measurements and adjust itself to better capture the existing uncertainties,” said Eftekharnejad. “Once we know how to model outages and predict them – now we have a way to quickly predict outages in seconds.”

Eftekharnejad and her team also want to develop better forecast models for wind and solar power generation.

“If we can better predict the day-ahead generation uncertainties, we can better plan for those uncertainties and ensure adequate reserves are available,” said Eftekharnejad.

In addition to preventing large-scale blackouts, Eftekharnejad says better modeling of the grid uncertainties could also have significant economic benefits.

“Reducing disruptions is better for the electric utilities and customers. More reliable power could reduce costs for both,” said Eftekharnejad.

“Receiving an NSF CAREER award is an important accomplishment and recognition for new faculty. The awards support pre-tenure early-career assistant professors,” said Jae Oh, the David G. Edelstein Professor for Broadening Participation and chair of the Department of Electrical Engineering and Computer Science. “The EECS department has been regularly producing CAREER awardees in recent years, and we expect this trend to continue in many future years.”

“Dr. Eftekharnejad’s research reveals the power of algorithms in modern society. We obviously cannot afford to rely on nonrenewable resources exclusively for power, nor can we always imagine what power demands and failure events will happen in the future,” said J. Cole Smith, Dean of the College of Engineering and Computer Science. “Her research will ultimately serve to make our power grid more effective in normal operations, more reliable in times of disruptions, and more efficient in using renewable energy sources. This kind of research is just so vital to addressing modern challenges to our national security and quality of life, and the College is excited to see what she and her team of students will produce with this prestigious award.”

Biomedical and Chemical Engineering Student Spotlight: Lindy Melegari ’22

Biomedical Engineering student Lindy Melegari ’22 was named as a Syracuse University Scholar and received the Karen Hiiemae Outstanding Achievement Award.

Hometown: Pittsburgh, Pennsylvania

BMCE/ECS/other activities you have been involved with:
Doyle Research Lab

Manlius Fire Department EMT

Server at Texas Roadhouse

Crisis Textline Volunteer

First Year Players

The Mandarins

Phi Delta Epsilon

OttoTHON


Favorite thing about BMCE:

The staff has been one of the most incredible things about the BMCE department. I always felt so comfortable going to any of my professors for help, and they were always my biggest supporters if any of my endeavors.

Favorite thing about SU:

I have had the opportunity to take a multitude of diverse and interesting classes that I never in a million year would have thought I could have connected to my career. SU has enabled me to look at my professional endeavors with an open mind.

Plan after graduation:

I will be doing research in the Yale University School of Medicine in their Department of Radiology and Biomedical Imaging.

Life Trustee Nick Donofrio G’71, H’11 Receives 2022 International Peace Honors Award

Nicholas “Nick” Donofrio G’71, H’11, a Syracuse University Life Trustee, was one of the distinguished award recipients at the 2022 International Peace Honors on February 27th. The International Peace Honors celebrates the most outstanding global leaders and change-agents of our time who make philanthropy and humanitarian service a hallmark of their lives, to advance humanity and our planet.

Donofrio spent 44 years at IBM, working his way up to become executive vice president of innovation and technology. He has dedicated much of his life to providing and expanding opportunity in STEM fields to students from underrepresented groups. Donofrio has also served as the board chairman for the non-profit PeaceTech Lab since it was founded by the United States Institute of Peace in 2014, he was appointed by the U.S. Department of Education to serve on the Commission on the Future of Higher Education and by the National Academy of Engineering for their Committee on Racial Justice and Equity.

“Nick’s commitment to making STEM fields more diverse and inclusive exemplifies the leadership he has shown throughout his career,” says Chancellor Kent Syverud. “His tireless efforts have provided pathways to countless individuals pursuing careers in STEM. I congratulate Nick on this tremendous recognition. Our community is proud and fortunate to have him as an active part of our Syracuse University family.”

He founded the Donofrio Scholars program at the College of Engineering and Computer Science that evolved into the ECS Ambassadors program. His recent gift to the Forever Orange Campaign helps support and grow holistic diversity, equity and inclusion initiatives that touch on every aspect of the College, including recruiting and retaining diverse students, faculty and staff, strengthening a culture of equity and inclusion, ensuring student access to internships and co-ops, academic support, career mentoring, and professional societies.

“Nick is one of the most extraordinary people I’ve had the chance to meet,” said College of Engineering and Computer Science Dean J. Cole Smith. “Before you meet Nick, you know him for his elite professional success and recognition. After you get to know him, you see a man with a rare and profound dedication to helping humanity. We have long known of Nick’s sustained impact on students and his profession at Syracuse University, and I am so gratified to see him recognized worldwide with this prestigious honor.”

In an article published in 2021 by the National Academy of Engineering, Donofrio wrote that “innovation doesn’t just ‘happen.’ It is enabled by environments and organizations that foster open, collaborative, inclusive, multidisciplinary thinking and working. Time and again, I have been reminded that the more open and inclusive the team, the more successful it is—because nobody knows in advance which team member is going to supply a critical piece of the value puzzle.”

As a 2022 International Peace Honoree, Donofrio joins prestigious actor, director and social activist Forest Whitaker, MasterCard chairman Ajay Banga; internet phenomenon and “Humans of New York” creator Brandon Stanton and Advanced Micro Devices president & CEO Dr. Lisa Su.

Electrical Engineering and Biomedical Engineering Alumni Profile: Grace Lanni ’88

Great ideas often disappear into a chasm that exists between inception and execution. To help bridge that gap, Grace Lanni ’88 has an innate ability to communicate with an array of stakeholders, help entrepreneurs find clarity in their ideas, and turn them into solutions that help people. Her fluency in a diverse set of subjects and ability to adapt was apparent from the start of her time as a student at Syracuse University.

Lanni entered college on a full Airforce ROTC scholarship and chose electrical engineering and biomedical engineering as part of a dual degree, along with a minor in music. Lanni found Syracuse University provided her with opportunities and resources to pursue her differing interests.

“The professors were very entrepreneurial, and I leaned into that. I was able to work with a physician at Upstate Medical Center as a lab assistant and I had other internship activities so I could apply the stuff I was learning,” said Lanni. “I also got to join the jazz band and be part of a community of musicians.”

After graduating, Lanni accepted a position where she quickly learned she was uniquely effective at communicating between two key departments.

“I would sit with the engineers in the morning and then spend the afternoon with the marketing people to explain what it was the engineers were building, and how to sell and implement the products,” said Lanni.

Lanni admits she had more fun spending time with the marketing team, and it opened her eyes to a side of business she had never experienced. This was the first of several significant shifts Lanni used to chart her career. In her next job, Lanni got a taste for selling. Then she moved to California where she took a position at a small networking hardware company and helped them grow to 35 employees within a year. The next move was to Austin, Texas and into software sales at a startup, but suddenly her momentum was stopped. After two months of being in the role, Lanni arrived at the office to find the doors chained shut. The company had gone out of business. Lanni had moved to Austin with her kids, she didn’t know many people, and did not have a job. After briefly considering retreating back to California, Lanni made some calls to colleagues and started looking for projects. Six months later she had her own company.

At the time, companies were just beginning to move servers off site to colocation centers, but the software they needed to manage the new server set up didn’t exist. Recognizing a sound opportunity, Lanni drafted a proposal and became one of only two women to score million-dollar money from a tier one venture capital firm that year. This was Lanni’s first time working with a venture group, and she says although it came with new challenges, the experience made her want to help women entrepreneurs.

“I really didn’t have any experience in the venture community. I had some support, some mentorship, but nothing like today,” said Lanni. “One of the things I love to do is support other women who want to go into the venture community and that is why. I didn’t have the support. I didn’t know what to say. I didn’t know how to manage the money. Those are skills I learned.”

Lanni broke away to work on a new startup in collaboration with Dell engineers to develop and sell an early version of the tablet PC. Lanni booked the first order, signed up the first partner and the first distributor, and after seven years she decided it was time for another move. Healthtech allowed Lanni to enjoy bioengineering and entrepreneurship, but by 2016, she went all-in on digital marketing. Lanni went to her team and asked what they thought she should focus on, and they said, “you’re a personal branding expert.” In response, Lanni launched a new business called All About That Brand to focus on helping entrepreneurs tell their stories to attract their ideal customers.

Lanni is a pioneer in the branding influencer space. All About That Brand helped bring personal brand influence into the spotlight and it took off. The platform includes an award-winning podcast, an award-winning book, and it positioned Lanni as an influencer in marketing, personal branding, and customer experience. In February of 2020, Lanni was searching for a new opportunity to innovate, and her reputation led to an invitation to appear on the cyberbullying episode of “4 Days to Save the World,” a reality show that challenges groups of entrepreneurs to develop solutions for global social problems.

The eruption of COVID-19 nearly derailed any further participation with the show because Lanni needed to focus on managing disruption facing All About That Brand. When she notified the showrunners that she wanted to step away, they countered by asking Lanni to stay on board in a new role, associate producer. It may sound like a strange role for an engineer, but both engineering and producing require a similar way of thinking.

“You have a problem in front of you almost every hour of every day. It is 24 hours of problem solving to the emergency room level,” said Lanni.

Her engineering mindset made Lanni a natural fit and within six months she became the executive producer in charge of 4 teams responsible for recruiting show-ready entrepreneurs, sponsorships, and financing to bring the show to set.

“With all my business expertise, I was able to weigh in and work directly with the studio owner and creator. It was a wonderful, wild experience for 18 months,” said Lanni. “It was like going back to college. I loved college. I learned so many new things.”

While talking with entrepreneurs around the world for the show, Lanni would often hear about the causes that mattered most to them and why. Those conversations got her thinking about how to stand out in the increasingly crowded brand space and blend her complimentary roles as a branding influencer and executive producer with her passion for helping entrepreneurs.

“When you’re talking with really smart entrepreneurs about how to save the world, it’s pretty fun. I decided I wanted to be in the conversations about cause. I wanted to help my clients identify and lean into their cause,” said Lanni.

Cause branding became Lanni’s new lane, and her latest enterprise is called Giving Out Loud. It is a media program that focuses on helping entrepreneurs select a cause that aligns with their brand and helping them demonstrate care for that cause.

“If you’re in business and you want to interact with younger generations, figure out what matters to you and talk about it,” said Lanni. “Be in that conversation because that is where things are headed.”

In the simplest terms, Lanni is an entrepreneur who wants to help other entrepreneurs at every level. Including aspiring entrepreneurs at Syracuse University.

“I am a fan of the entrepreneurship focus at Syracuse University. I love being a judge for Invent@SU and being a mentor,” said Lanni. “Have a great time and realize it is a journey. What you’re studying today is more about the people in the room than what is on the page. Really celebrate those relationships.”

Biomedical and Chemical Engineering Student Profile: Zheng Xiong

Zheng Xiong was a 2022 Recipient of the All University Doctoral Prize.

Hometown:

China

BMCE/ECS/other activities you have been involved with:

During my PhD program, I had been actively involved with various academic activities in engineering college, such as ECS research day, Syracuse Stevenson Lectures, 3-min Thesis, Graduate Dean Research Day etc. These activities are fantastic opportunities to let research student like me interpreting their technical works to audiences with various background.

Favorite thing about BMCE:

BMCE is well known for its Bioinspired Institute (Formerly Syracuse Biomaterial Institute). It is a multidisciplinary hub with professors from almost all STEM majors in SU, ESF and Upstate Medical. The collaborative atmosphere and research facilities are at top-level in US.  

Favorite thing about SU:

There were so many memories at SU, where you could always feel passion when you walk over quad. You could enjoy sunshine at summer, observe beautiful foliage at Fall, shove your snow at winter and find rebirth of new year at Spring. There are always activities every week, even every day. The most unforgettable moment is Syracuse basketball team killed Duke’s at the last minute in 2017. You can’t imagine how exciting it is.

Plan after graduation:

I want to continue my expertise in optics and optical engineering to improve people live through providing innovative technologies. I have been working in Science and Technology Division of Corning Incorporated since I graduated at 2021 summer. My role is innovating advanced laser processing systems for next-generation glass application in automobile, optical fiber, display, and consumer electronics businesses.

Biomedical and Chemical Engineering Student Profile: Xuyang Qin G’22

Xuyang Qin was a 2022 Recipient of the All University Masters Prize.

Hometown:

Shijiazhuang, China

BMCE/ECS/other activities you have been involved with:

Research in Professor Nangia’s group; the quick presentation and poster session for the Stevenson Biomaterials Day of 2021

Favorite thing about BMCE:

I love all the faculty and staff who are of great patience and kindness. Collaborations and bonds of friendship are tight in our research team.

Favorite thing about SU:

The view on the campus is always great, whenever from summer to winter. Facilities are well-established, not only for meals, snacks, clinics and exercises, whatever you need can be found and solved on campus. Really feel great to have so many precious memories in my study at SU.

Plan after graduation:

I’m going to pursue my Ph.D. in SU and continue my journey on research.

Biomedical and Chemical Engineering Student Profile: Natalie Petryk ’21, G’22

Biomedical and Chemical Engineering Graduate Student Natalie Petryk ’21, G’22 was named as a 2022 recipient of the All University Masters Prize.

Hometown:

Berkeley Heights, NJ

BMCE/ECS/other activities you have been involved with:

As an undergraduate student at SU, I was an Academic Excellence Workshop Facilitator and the Activities and Events Chair for Relay for Life. I was also involved with Alpha Omega Epsilon, Engineering World Health, and Excelerators. As a graduate student, I am conducting research on shape memory polymer foams with clinical applications in wound healing and post-surgical tissue regeneration in Dr. Mary Beth Monroe’s lab. I am also a TA for Biomaterials and Medical Devices (BEN 468/668).

Favorite thing about BMCE:

My favorite part about BMCE is the incredible support of every professor in the department. They have motivated me in the classroom and inspired me through my own research.

Favorite thing about SU:

My favorite thing about Syracuse University is the opportunity to get involved with research early on. I discovered a passion for biomaterials research starting my sophomore year, which ultimately shaped my future career goals, and I have built upon that work as part of my graduate studies.

Plan after graduation:

After completing my master’s thesis this spring, I will be continuing my research journey here as a Ph.D. student under Dr. Mary Beth Monroe.

Saving Lives Through Planning: Eric Letvin ’92, G’94

For most people, catastrophic thinking is something they want to avoid. For Eric Letvin ’92, G’94, preparation for disasters has defined his professional career. Letvin is the Deputy Assistant Administrator for Mitigation the Federal Emergency Management Agency (FEMA) and directs FEMA’s pre- and post-disaster mitigation programs that support local level projects intended to avoid or reduce the loss of life and property.

At Syracuse University, Letvin completed both his Bachelor’s and Master’s degrees in environmental engineering while working under the guidance of Civil and Environmental Engineering Professors Charles Driscoll and Chris Johnson. After graduation, he initially worked for engineering consulting firms that dealt with hazard mitigation and risk management.

“I’ve been working in hazard mitigation since my early career, going out after national disasters and seeing how buildings performed,” said Letvin. “How to approach recommendations for rebuilding, what changes could be made to codes and standards to reduce the vulnerabilities to future natural hazards.”

Letvin made the move to public service and was named the Disaster and Failure Studies Program Director within the National Institute of Standards and Technology’s (NIST) Engineering Laboratory under the Department of Commerce. NIST teams assess building and infrastructure performance during natural disasters and evaluate steps that could be taken to improve future construction.

“We conducted an extensive investigation of the Joplin tornados, making recommendations to codes and standards.”

After NIST, Letvin was the Director of Hazard Mitigation and Risk Reduction Policy for the National Security Council. In his role, Letvin coordinated disaster preparation efforts and advised the President and members of Congress on projects designed to protect crucial infrastructure during a disaster.

“We did a lot of work supporting the rebuilding after Superstorm Sandy and I helped write executive orders aimed at increasing resiliency to floods, wildfires and earthquakes,” said Letvin.

After studying the impact of Tropical Storm Allison on Southeast Texas in 2001, Letvin’s office supported mitigation grants which improved flood walls and structural improvements to the Texas Medical Center.

“When Hurricane Harvey hit, that medical complex was operational. The hospitals remained operational during Harvey due to the well-designed flood protection measures.”  said Letvin.

Letvin joined FEMA in 2016, overseeing Hazard Mitigation Grant Program, the Pre-Disaster Mitigation Grant Program, the Flood Mitigation Assistance grants, the Floodplain Management component of the National Flood Insurance Program.

Over 22,000 communities across the U.S. participate in the National Flood Insurance Program and they are all responsible for enforcing the minimum standards for building in floodplains.

“Our dollars help promote hazard risk reduction,” said Letvin. “We want to lessen the impacts of future disasters so look at projects and determine if they are effective and feasible. We are always thinking about the next event.”

As part of FEMA’s response to COVID-19, Letvin was asked to think about the future and how different government agencies could coordinate the response mission in a pandemic environment.

“How would we conduct s response in a COVID environment?” said Letvin. “It’s a completely different environment, we exercise for it, we plan for it.”

Letvin believes that COVID-19, like many other challenges facing our society, will require bringing people together with different areas of expertise.

“If we make progress, engineers will play a crucial role but we need to work with the scientists,” said Letvin. “How do we protect the critical infrastructure in our country? We need to work with health care professionals to understand how it operates.”

He sees the interdisciplinary approach at Syracuse University as a strong foundation for his career. Being on a campus with renowned policy, engineering, computer science, management, public health and communications programs reflects the collaborations needed every day in the real world.

“You work with colleagues to solve a larger problem, the critical thinking – that is very applicable after graduation,” said Letvin.

2022 Engineering and Computer Science Research Day Awards

2022 Research Day

We are happy to announce the winners from the 2022 Engineering and Computer Science Research Day held on March 25th, 2022.

Poster Competition

1st Place: Elizabeth Oguntade, PhD student in Bioengineering.

On-Demand Activation of Functional Protein Surface Patterns with Tunable Topography
Suitable for Biomedical Applications. Advisor: Dr. James Henderson

2nd Place: Natalie Petryk, MS student in Bioengineering.

Synthesis of Shape Memory Polymer Foams with Off-the-Shelf Components for Improved
Commercialization. Advisor: Dr. Mary Beth Monroe

3rd Place: Alexander Hartwell, PhD student in Mechanical and Aerospace
Engineering.

Introduction of a Multilayered Cathode for Improved Internal
Cathode Tubular Solid Oxide Fuel Cell Performance. Advisor: Dr. Jeongmin Ahn
Honorable Mention: Saif Khalil Elsayed, MS student in Civil Engineering.
Modeling Self-Folding Hybrid SU-8 Skin for 3D Biosensing Microstructures.
Advisor: Dr. Zhao Qin


Oral Presentation Competition


Communication and Security Session

1st Place: Kai Li, PhD student in Electrical/Computer Engineering. Detect and
Mitigate Vulnerabilities in Ethereum Transaction Pool. Advisor: Dr. Yuzhe Tang

2nd Place: Xinyi Zhou, PhD student in Computer/Information Science. “This is
Fake! Shared it by Mistake”: Assessing the Intent of Fake News Spreaders. Advisor:
Dr. Reza Zafarani


Health and Well-being Session


1st Place: Yousr Dhaouadi, PhD student in Chemical Engineering. Forming
Bacterial Persisters with Light. Advisor: Dr. Dacheng Ren


2nd Place: Henry Beaman, PhD student in Bioengineering. Gas-Blown Super
Porous Hydrogels with Rapid Gelling and High Cell Viability for Cell Encapsulation.
Advisor: Dr. Mary Beth Monroe


Energy, Environment & Smart Materials Session

1st Place: Durgesh Ranjan, PhD student in Mechanical and Aerospace Engineering.
Porous nanochannel wicks based solar vapor generation device. Advisor: Dr.
Shalabh Maroo


2nd Place: Alexander Johnson, PhD student in Civil Engineering. Estimating Dry
Deposition of Atmospheric Particles by Rain Washoff from Urban Surfaces.
Advisor: Dr. Cliff Davidson


Sensors, Robotics & Smart Systems Session

1st Place: Lin Zhang, PhD student in Computer/Information Science. Adaptive
Sensor Attack Detection for Cyber-Physical Systems. Advisor: Dr. Fanxin Kong

2nd Place: Zixin Jiang, PhD student in Mechanical and Aerospace Engineering,
Short-term occupancy prediction driven intelligent HVAC control. Advisor: Dr. Bing
Dong

Syracuse University and the Rochester Institute of Technology Partner to Reduce Wasted Food in New York State

View of campus from Crouse Hinds Hall during the first week of fall.

Syracuse University’s Center for Sustainable Community Solutions (CSCS) and the New York State Pollution Prevention Institute (NYSP2I) at the Rochester Institute of Technology are partnering on a grant from the U.S. Department of Agriculture (USDA) to assist communities and stakeholders in New York State with reducing the amount of edible food that goes to waste. 

The USDA estimates that approximately 35 percent of food produced in the U.S. goes uneaten, which according to the nonprofit Rethink Food Waste through Economics and Date (ReFED), incurs a nationwide annual cost of more than $400 billion. Wasted food is also a large contributor to global climate change and wastes significant amounts of freshwater, energy, and other agricultural inputs. Perhaps most egregiously, the U.S. is wasting more than one-third of its food supply while Feeding America estimates that 1 in 9 Americans face hunger.  

To help mitigate these issues, CSCS and NYSP2I are collaborating to develop a series of workshops, guidance materials, and technical assistance opportunities for New York State community leaders, with a focus on rural areas. These community leaders and other stakeholders will receive guidance, training, and support for the creation of local sustainable organics management plans. Some aspects of the plans will include quantifying and characterizing local food loss, identifying opportunities for food loss reduction, establishing networks for edible food rescue, creating systems for food scraps collection and processing (e.g., composting), and more.

“We are thrilled to team up with NYSP2I to complement each other’s experience and knowledge in reducing wasted food,” says CSCS Assistant Director, Melissa Young. “Our teams will work with communities to develop solutions for getting more edible food to hungry people and diverting more organic materials to be recycled into valuable soil amendment.”

This effort will help expand the benefits of The NYS Food Donation and Food Scraps Recycling Law, which went into effect January 1, 2022, by providing additional support to stakeholders who may or may not be affected by the law. Currently, the law only pertains to certain entities that generate an annual average of two tons or more of food waste per week.  

“Creating a better, more sustainable future for our rural communities takes teamwork, and collaboration with all of the stakeholders,” says NYSP2I Director, Charles Ruffing. “NYSP2I is excited to join forces with these communities and CSCS to help reduce edible food waste across the Empire State.”

CSCS and NYSP2I will begin promoting the workshop series in the Spring of 2022 with the goal of facilitating multiple training events throughout the Summer of 2022. If you are interested in receiving updates about the workshop series, or learning more about this program, please contact SU-CSCS Program Manager, Jesse Kerns, at jekerns@syr.edu.

Collaborative Partnership Between Syracuse University and Leading Research Universities Receives Presidential Award

Students walking to and from Carnegie Library in early spring

The GEM Consortium, a collaborative partnership between leading research universities and industry to help underrepresented students earn masters and doctoral degrees in STEM fields, received the 2021 Presidential Award for Excellence in Science, Mathematics and Engineering Mentoring.

Syracuse University has been a member of the GEM Consortium for almost 30 years. In the past 5 years, GEM Fellowships have been awarded to graduate students in the School of Architecture, College of Arts and Sciences, College of Engineering and Computer Science as well as the School of Information Studies. The number of GEM Fellowship applications from SU students is now in the top 10 among GEM member universities. Civil and environmental engineering Professor Dawit Negussey is the current Syracuse University representative on the GEM Consortium.

“The award recognizes the contributions of the GEM Consortium in providing a scalable path to STEM careers in academia and industry for underrepresented students,” said Negussey.

“I’m grateful for all of Professor Negussey’s efforts to grow our graduate education pipeline for underrepresented graduate students at Syracuse University,” said Peter Vanable, dean of the Graduate School. “To go from relatively little activity with the GEM Consortium to being a top 10 contributor of GEM applicants is a clear marker of our commitment to increasing the diversity of our graduate student population.”

Over the past 45 years, more than 4000 GEM Fellows have earned MS and PhD degrees in STEM fields. At present, the GEM consortium membership consists of 129 private and public national universities and 61 major corporations and research laboratories.

Building for the Future: Dawn Penniman ’90, G’97

From her first visit to campus and meeting with civil and environmental engineering Professor Sam Clemence, Dawn Penniman ’90, G’ 97 knew Syracuse University was the place for her.

“Sam was so influential to me,” said Penniman. “When I met him, that was the lynchpin for why I wanted to come to Syracuse.”

After finishing her undergraduate degree in civil engineering, she started working at a firm in Syracuse and completed her master’s degree in environmental engineering while working full-time. Those degrees were the beginning of a career in hazardous waste investigation and remediation with Arcadis. Over the past thirty years she has been remediating sites and managing projects related to multiple facets of environmental engineering.

As she looks back at where her career, she sees the Orange roots that made it possible.

“I wanted to give back to the university,” said Penniman. “I am a very proud alum and I want to provide this opportunity to the next generation of engineers and computer scientists.”

Penniman worked with College of Engineering and Computer Science (ECS) development staff to document her planned gift. Once realized, her gift will support scholarships and programs for years to come.

“It was very easy to change the beneficiary on my 401K and the potential for helping others is incredible. I hope this will help encourage more young women to pursue STEM fields.

If you’d like to document a planned gift or bequest with ECS, please contact Amy Gullotta asgullot@syr.edu.

Electrical Engineering and Computer Science Professor Pramod K. Varshney Selected to Receive 2021 IEEE Aerospace and Electronic Systems Society Pioneer Award

Pramod Varshney Portrait
Pramod Varshney Portrait

Pramod Varshney, Distinguished Professor of Electrical Engineering and Computer Science, has been selected to receive the 2021 IEEE Aerospace and Electronic Systems Society (AESS) Pioneer Award. The AESS Pioneer award has been given annually since 1949 and is one of the most notable awards in the electronics and aerospace systems field. The award recognizes contributions significant to bringing into being systems that are still in existence today. The contributions for which the award is bestowed are to have been made at least 20 years prior to the year of the award.

The 2021 award will recognize Varshney’s contributions to signal processing and information fusion enabling advanced aerospace and electronic systems.

He will receive the award at 2022 IEEE Radar Conference in New York City in March.

“Professor Varshney has been a trailblazer in the field of complex information processing who has made innumerable contributions over the course of his career.  The Pioneer Award fittingly recognizes that some of his inventions paved the way for today’s rapidly evolving technologies,” said Ramesh Raina, Interim Vice President for Research.

Varshney was also selected to receive the prestigious 2021 Claude Shannon-Harry Nyquist Technical Achievement Award from the IEEE Signal Processing Society for outstanding contributions in the fields of distributed inference and data fusion.

“Within a few months, Dr. Varshney won two prestigious awards from two different IEEE societies. Such an achievement is completely unheard of. He won the 2021 Shannon-Nyquist Technical Achievement Award from the IEEE Signal Processing Society and the 2021 IEEE Aerospace and Electronic Systems Society (AESS) Pioneer Award. The EECS department is incredibly proud of the achievements and recognitions that he truly deserves,” said Jae C. Oh Electrical Engineering and Computer Science Department Chair and David G. Edelstein Professor for Broadening Participation.

Racing into the Future

Mechanical and Aerospace Engineering Student Elliott Holdosh ‘23 Accepts Co-Op Position with Tesla

Long before he could drive them, Elliott Holdosh ’23 was always interested in cars. He got his first hands-on experience working with his grandfather on a 1989 Ford Mustang and it set his future in motion.

“When I was considering what I wanted to study in college, I thought – what could I do with cars?” said Holdosh.

When he arrived at Syracuse University’s College of Engineering and Computer Science, Holdosh started making connections and joined the Citrus Racing Formula SAE team. It gave him more experience with automobile design and engineering.

“It helped me learn a lot about technology but also automobile engineering terminology,” said Holdosh.

While working with Citrus Racing, Holdosh saw a posting in the group’s Slack channel for a job opportunity in solid works and computer aided design (CAD). It led to a part-time position with Auto Gear Equipment in Syracuse who specialize in high performance manual shift gearboxes for racecars.

“I was able to work as a drafting engineer,” said Holdosh. “I took two dimensional sketches and brought them to 3D designs. It has been an incredible opportunity and meaningful professional experience with a great company.”

The experience at Auto Gear Equipment also confirmed for Holdosh that he wanted a career in automobile engineering. He worked with the career services office and his academic advisor in the College of Engineering and Computer Science as he explored co-op opportunities at automobile engineering companies.

“Career advisor Christopher Maldonado helped me with a resume review and to improve my LinkedIn profile,” said Holdosh. “I knew a co-op could be a great opportunity for me.”

Holdosh applied for and was offered an internship with Tesla at their Fremont, California facility as a vehicle engineering intern for the interiors engineering team.

“When I got the news, it was a very impactful moment,” said Holdosh.

He will be at Tesla for the Spring 2022 semester but was able to adapt his academic schedule so he will still be on track to graduate on time after four years at Syracuse University. He is grateful for the relationships he has built on and off-campus and believes those connections are what helped him land the position at Tesla.

“Get involved on campus and get to know people,” said Holdosh. “It was the catalyst.”

While his engineering journey began with his grandfather’s Mustang, Holdosh is excited to be part of the next generation of automobile design.

“I want to work for a company that is always pushing to improve,” said Holdosh. “We are going into an age where we need to prioritize our planet. Tesla is the best at that right now.”

Associate Dean for Research and Graduate Programs Dacheng Ren Elected to the American Institute for Medical and Biological Engineering College of Fellows

The American Institute for Medical and Biological Engineering (AIMBE) has announced the election of Dacheng Ren to its College of Fellows. Ren is the Associate Dean for Research and Graduate Programs at the College of Engineering and Computer Science, and Stevenson Endowed Professor in the Department of Biomedical and Chemical Engineering.

Ren was nominated, reviewed, and elected by peers and members of the AIMBE College of Fellows for outstanding contributions to the understanding and control of bacterial biofilms and medical device associated infections. The College of Fellows is comprised of the top two percent of medical and biological engineers in the country. The most accomplished and distinguished engineering and medical school chairs, research directors, professors, innovators, and successful entrepreneurs comprise the College of Fellows.

“It is a true honor to join other outstanding colleagues in the AIMBE College of Fellows. Microbial biofilms cause persistent infections that respond poorly to antibiotics, such as those associated with implanted medical devices,” said Ren. “There is a lot to be done to address this grand challenge and I look forward to making more contributions.”

“This is a great honor for Dacheng who is not only one of Syracuse University’s most innovative researchers but a strong supporter and mentor to other researchers across our university. He has been remarkable in his capacity to continue leading a preeminent research program while supporting the College’s research and graduate student enterprise via his role as associate dean. We are proud to celebrate this recognition of his work,” said College of Engineering and Computer Science Dean J. Cole Smith.

AIMBE Fellows are regularly recognized for their contributions in teaching, research, and innovation. AIMBE Fellows have been awarded the Nobel Prize, the Presidential Medal of Science and the Presidential Medal of Technology and Innovation, and many also are members of the National Academy of Engineering, National Academy of Medicine, and the National Academy of Sciences. A formal induction ceremony will be held during AIMBE’s 2022 Annual Event on March 25.

Ren will be inducted along with 152 colleagues who make up the AIMBE Fellow Class of 2022. For more information about the AIMBE Annual Event, please visit www.aimbe.org. AIMBE’s mission is to recognize excellence in, and advocate for, the fields of medical and biological engineering to advance society. Since 1991, AIMBE’s College of Fellows has led the way for technological growth and advancement in the fields of medical and biological engineering. AIMBE Fellows have helped revolutionize medicine and related fields to enhance and extend the lives of people all over the world. They have successfully advocated for public policies that have enabled researchers and business-makers to further the interests of engineers, teachers, scientists, clinical practitioners, and ultimately, patients. AIMBE Fellows are committed to giving back to the fields of medical and biological engineering through advocacy efforts and public policy initiatives that benefit the scientific community, as well as society at large.

Fall 2021 Engineering and Computer Science Dean’s List

SU Campus
The Einhorn Family Walk stretches out in front of the Hall of Languages on a autumn day.

In recognition of superior scholarship, the following students have been entered on the Engineering & Computer Science Dean’s List for Fall 2021.

To be eligible for Dean’s List recognition, the minimum semester grade point average must be 3.40 or higher, must have earned a minimum of 12 graded credits and must have no missing or incomplete grades.

Aerospace Engineering 

Lucy Genevieve Adams

Allyson Almeida

Brady Joseph Arruda

Richard L Bruschi

Curtis James Cline

Bryan Collins

Nicholas Daniel Crane

Brian James Cronin

Christopher John Doherty

Michael Alexander Donato

Benjamin David Faasse

Kassidy Fields

Christian Scott Fitzgerald

Victoria Elizabeth Forsyth

Benjamin Daniel Gerard

Alexandre J Gill

Zachary William Haas

Alyssa Henley

Aidan Hoff

Matthew James Holmes

Paula Cristina Ibelings

Nicholas John Jacobs

Sydney F Jud

Hunter John Adam Knarr

Trevor Anthony Knight

Eleanor Jane Lawler

Isaac Alan Lehigh

Emma Lee Levenson

Maximillian Lipinski

Jacob Eric Long

Powers Craig Lynch

Brendan Michael Marquis

Noah Martel

Elsa Adrianna Martin

Jonathan Henry Martin

Maxwell Joseph Martin

William Armstrong Martin

Jason W McElhinney

Mariana C McManus

Parker Byrne McMillan

Alexander Timothy Metcalf

Romeo Michelson

John P Michinko

Kendra Teresa Miller

Evan Gregory Moore

Brendan Pierce Murty

Mark Namatsaliuk

Tatiyyanah Queen-Asia Hope Nelums

Jarod I Okamura

David Dang Pham

Logan D Prye

Nicholas Christopher Richard

Brandon Walker Riley

Tracey Josephine Rochette

Daniela Maria Ruano-Pinos

Michael Chandler Saksa

William J Saueressig

Fred Evan Schaffer

William Arthur Sennett

Justine John A Serdoncillo

Kanya Kiresh Shah

Vraj Shah

Prabha Singh

Gregory C Slodysko Jr

Zachary Michael Stahl

Ethan J Stocum

Jaime S Sued Jr

Yiyuan Sun

Marco Svolinsky

Richard A Tedeschi

Anthony R Tricarico

Cody Joseph VanNostrand

Diego Roman Villegas

Mason Alexander Weber

Kana Li Wong

Cameron M Woodbury

Melissa Yeung

Bioengineering 

Anthony Drew Acierto

Ashraf Tariq Alnatour

Bianca Louise Andrada

Jason Bae

Anna Mae Brunson

Britnie Jean Carpentier

Lukas Cook

Tessa Riley Decicco

Mia-Marie Fields

Katherine Ann Gardner

Jennifer Gonzalez

Skyla Gordon

Benjamin Michael Grainger

Jenna Grutzmacher

Grace Haas

Lauren Elizabeth Hamilton

Victoria Li Rui Hathaway

Brenna Henderson

Avinash Jagroo

Madeline Jones

Gabriel Khan

Olivia Lynne Kmito

Emily Elizabeth Labour

Quinn Patrick Langdon

Sara Anne Leonardo

Alejandra Eugenia Lopez

Ethan L Masters

Aidan Theresa McCarthy

Aelish McGivney

Ian G McHugh

Lindy M Melegari

Katherine Grace Monroe

Hannah V Murphy

Alexander Patrick Musselman

Mark Nicola

Nicole E Nielsen

Kerrin Anne O’Grady

Mia Dian Paynton

Megan Perlman

Connor Preston

Michael Steven Presunka

Gavin David Richards

Mia Elizabeth Russo

Amira Salihovic

Juliana Sepulveda

Bridget Yong Sides

Katherine Anne Southard

Justin N Stock

Elizabeth Tarami Su

Zhuoqi Tong

Rochan Jitendra Urankar

Hasan Usmanov

Edgardo Velazquez

Danny Vu

Carly J Ward

Nathaniel D Wellington

Maximillian Meier Wilderman

Lauren Margaret Woodford

Rui Xie

Julian Marcus Smucker Zorn

Samantha Yvonne Zysk

Chemical Engineering 

Adriana M Archilla

Athena Andrea Basdekis

Brigitte A Belanger

Sandy Ynhu Cao

Trinity Joy Coates

Dennis Dao

Gabriela Duarte Saadia

Sophia Elizabeth Figueroa

Emily C Fittante

Edward Coleman Fluker

Mia Angela Goldberg

Brent Tadao Gosselin

Avery Gunderson

Christopher Max Hansen

Aiden A Jacobs

Natalia Jarmain

Hope Irene Johnson

Sonia Julius

Sayf Karim

Laxmi Khatiwada

Adam J Klinger

Simran Dharmendra Lakhani

Caroline J Leduc

Rawia F A M Marafi

Angela L Martinez

Sydney Rae Nowicki

Erin Marie Odonnell

Sean O’toole

Eli Irvin Paster

Daniel J Pelkey

Fabiana Nohelia Perez

Nora Swan Prosak

Ryan Gordon Ryersen

Riley Madison Schmerber

Jacob Matthew Shellhamer

Jason Tan

Elizabeth M Wall

Tyrese J Whyte

Jackson Richard Yuen

Civil Engineering 

Shalom Acheampong

Cassie Agren

Nicole Ayora

Maxwell Bell

Christian Balingit Bianco

Henry C Bievenue

Ryan Bourdeau

Matthew Emmet Brewster

Alycia Joline Bruce

Masson Bruening

David Coghiel

Alejandro E Correa

Aymeric P Destree

Kelly Diaz Rojas

Jack Dwyer

Marlee Ann Ecton

Stephen Goffredo

Elliane Reut Greenberg

Julia Ann Johnson-Milstein

Joshua Michael Kaufman

Jakob Lamond Keller

Kate Astrid Kemnitz

Alexander Gregory Klee

Adam Paul Landry

Evangelia Birget Larson

Abigail G Laschalt

Daniel Leyva

Emma Marie Liptrap

Emilija Alise Lizins

Erick Lojano-Quispe

William Ma

John M Mazza

Jessica M McGowan

Lucas James Meiers

Sumit Harshad Mistry

Amira Mouline

Mazin F Moya

Trevor Robert Napoli

Marissa R Nicole

Maxwell Robert Pozar

Kaylin Janet Richards

Alexander David Ruppe

Cassie Elizabeth Saracino

Yazbeck Thomas Sarkees

Juha Wesley Schraden

Aaron Presley Shinn

Caitlin Jane Spillane

Jose Arturo Venegas

Christian Viola

Angelina Maggie Wong

Isabelle Wong

Sarah Wong

Paige H Yamane

Sifei Zhu

Computer Engineering 

Adekunle J Akinshola

Chikeluba K Anierobi

Graciela Gicel Avila

Mergim Azemi

Kyle J Betten

Jackson Thomas Bradley

Carlon Brown

Dynasty Da’Nasia Chance

Kongxin Chen

Ibrahima Diallo

Lyn El Sayed Kassem

Melvin Ruben Escobar Gonzalez

Xavier Evans

Elizabeth A Fatade

Aidan Robert Harrington

Ethan Hensley

Kasey Jackson

Mehak Jetly

Virkin Jimenez

Benjamin N Johnson

Fundi Juriasi

Robert Nicholas Kashian

Bikash Khatiwoda

Jessica K Lat

Tyler Alexander Lavaway

Matthew B Leight

Jiaxiong Li

Nicholas Kent Magari

Kyle Maiorana

Aksel James Malatak

Jacob Stephen Masrouri

Isabel M Melo

Benjamin Hudson Murray

Pierce Austin Neubert

Jose L Olivera

Derrick Nana Yaw Osei Owusu

Alexander C Perez

Anthony Patrick Riello

Alfonso E Rivas

Daniel Rose

Samuel M Rosenthal

Hongyi Ruan

Zachary Joseph Starr

Declan Wavle

Ryan Wolff

Renjie Xu

Andy Zheng

Computer Science 

Aashutosh Acharya

Aaron Alakkadan

Labeeb Alam

Sajjad Abdullah Albadri

Huda A Ali

Anas Abdallah Hussein Alkhashroom

Joseph M Balascio

Simon C Barley

Giovanna Elizabeth Barsalona

Samantha E Bastien

Maxwell Robert Beam

Emma Bellai

Anas Ahmed Benhamida

Joshua Jordan Boucher

Brian Michael Bourne

Amanda Leigh Bowdren

Ella Maria Brink

Bryan Bladimir Bueno Reyes

Christopher Manuel Calderon Suarez

Liam M Calnan

Megan J Campbell

Chih-Chia Chen

Hong Yang Chen

Jackie Chen

Lawrence Chen

Runzhou Chen

Wenyu Chen

Yixing Chen

Yuhao Chen

Oscar Chi

Daniel Chmielewski

Season Chowdhury

Konstantinos Chrysoulas

Melissa Chu

Miguel Angel Cruz Flores

Matthew Cufari

Ryan Matthew Czirr

Salvatore DeDona

Aidan Christopher DeGooyer

Alpha Oumar Diallo

Lucille Jennifer Disalvo

Ting Dong

Christopher Edmonds

Yassin Mahmoud Elsharafi

Ryan Siebe Elsinga

Jair Espinoza

Xueyan Feng

Nathan B Fenske

Bennett Ferrari

Lucas Kuebler Fox

Mason Roy Freer

Evan Garvey

Grant Thomas Gifford

Brianna S Gillfillian

Justin Gluska

John Martin Gorman

Dayong Gu

Alexander Peter-Anthony Haas

Athanasios Hadjidimoulas

Ashley Marie Hamilton

Jillian Elizabeth Handrahan

Liam Gordon Hannah

Cameron Hoechst

Laurel Howell

Jacob Howlett

Jason Huang

Xuanye Huang

Yanju Huang

Chengyi Jiang

Tianyiming Jing

Frederick Jackson Jones

Michael Wesley Jones

Alan Jos

Lauren Keona Kaaiakamanu

Aarya Tara Kaphley

Maxwell Albert Kaufman

Matthew Keenan

Ekaterina Kladova

Joshua Jayvant Zachary Koshy

Krutartha Nagesh

Rami Lionel Kuttab

Janet Jihoo Lee

Maya J’Nai Lee

Jiashu Li

Ruowen Li

Yuxuan Li

Daniel Lim

Chengda Lin

Haochen Lin

Sandy Lin

Erxi Liu

Jiaming Liu

Joshua Zhou Liu

Junzhang Liu

Yuyuan Liu

Cayden Thomas Lombard

Kevin A Lopez

Yiheng Lu

Michael Fitzgerald Lupton Jr

Runzhi Ma

Hunter O’Neal Malley

Andrew Thomas Markarian

Kanoa Matton

Ryan M May

Anthony Louis Mazzacane

Matthew McDaniels

Noah Mechnig-Giordano

Philip Anthony Moceri

Thomas J Montfort

Aaron Masoud Moradi

Jovanni Nicholas Mosca

Chenxi Mu

Andi Muhaxheri

Zoe Anne Neale

Christopher Scott Nemeth Jr

Jillienne Judith Ness

Arianna Kassandra Nguyen

Carlyn M O’Leary

Marissa Lynn Orsley

Daniel Pae

Xiaofeng Pan

Michael J Panighetti

Adya Aditi Parida

Zizheng Pei

Brian Joseph Pellegrino

Carlo Francesco Pisacane

Daniel Pomerantz

Fiona Colleen Powers Beggs

Cheng Qiu

Shane Michael Race

Raasin Amin Rahman

Alexis Hope Ratigan

Christopher Rhodes

Robert R Robinson

Eric Rodriguez

Sadikshya Sanjel

Jonathan Lee Schwenk

Huahao Shang

Andrew Shao

Nolan Lee Shepherd

Chad Thom Smith

Anthony Logan Solt

Dongzhao Song

Yijie Song

Hayden Christopher Spelbring

Jeremy P Stabile

Kevin Sullivan

Nicholas P Sweet

Louanges Essohana Marlene Takou-Ayaoh

Jonathan Richard Constantine Templeton

Jonathan Ezra Thomas

Eduardo Torres-Garcia

Winston Tsui

Randy C Vargas

Kevin Anthony Verdeschi

Kritika Verma

Christopher Mark Vinciguerra

Lihan Wang

Ruobing Wang

Xinyi Wang

Zijian  Wang

Robert Ward

Jack Andrew Willis

Sarah Grace Wlodkoski

Ethan Wong

Zongxiu Wu

Zhuoyi Xiong

Yujie Xu

Jishuo Yang

Yisheng Yang

Yongcan Yang

Stella R Yaunches

Yulun Zeng

Liaotianbao Zhang

Mingyan Zhang

Rixiang Zhang

Ruihao Zhang

Weiwei Zhang

Zhiyuan Zhang

Haoyu Zhao

Jinchao Zhao

Junjie Zheng

Xiao Lin Zheng

Liuyu Zhou

Xinqian Zhou

Yitao Zhou

Yixuan Zhou

Joseph Patrick Zoll

Engineering Undeclared 

Sydney M Baylor

Thomas John Fabiano

Charles James Germosen

Alexander Joseph Hai

Juwei Lin

Luke Benjamin Lybarger

Kathleen Rose Meleski

Annika Daphne Meyers

James Peden

Justin Wayne Pettit

Emily Mae Schiessl

Abdullah Swati

Haoran Wang

Electrical Engineering 

Minghao Ai

Mohammed A Aljohani

Tianle Bu

Kevin E Buciak

Wyatt Glenn Bush

Vincent Alec Camarena

Arianna Maxine Cameron

Leshui Chen

Nicholas Shawn Connolly

Kevin James Donnelly

Henry C Duisberg

Randy Galicia

John Charles Garcia

Justin P Geary

Christopher Gill

Jose Ignacio Ginorio

Joseph Charles Jannello

Michael Matthew Kelly

Dong Kyu Kim

Yiwei Ling

Jemma Mallia

Liam Fuller Marcato

Tyler Sean Marston

Angel Antonio Medina

Lukas Allen Morris

Zixun Nian Nian

Jayson V Okhman

Dylan Palmer

Julia Pepin

Matthew Piciocchi

Francisco Rodriguez

Gilberto E Ruiz

Gabriel E Ruoff

Kayla Ann Saladyga

Jenna Mei Stapleton

Connor Christopher Sumner

Jared William Welch

Environmental Engineering

Tyler James Allison

David Michael Brodsky

Benjamin R Cavarra

Ananya P Chandra

Emma Crandall

Elizabeth Bryant Cultra

Eric James Fitzgerald

Eleanor Elizabeth Gettens

Brady E Hartnett

Christopher Harvey

Nicholas Colin Axel Kohl

Henry David Long

Molly M Matheson

Salma Valles Mohamed

Matthew Edward Nosalek

Liesel Marie Odden

Hennecys Darlene Perez Castro

Ella Hope Phipps

Scott M Potter

Yongfang Qi

Jasmine Victoria Rodriguez

Mary H Schieman

Hayley Shay Scott

Jacob M Tyler

Andrew Michael Vanderwege

Maria Antonia Villegas Botero

Emily Jean Vogel

Anna Wojcik

Savannah Marie Wujastyk

Qiuyu Zhou

Reilly Zink

Mechanical Engineering 

Owyn Phillip Adams

Joshua Carl Arndt

Timothy G Arnold

Charles D Ball

Arthur Barros

Michael James Battin Jr

Erin Beaudoin

Rachael O Beresford

Aidan Paul Bergman

Jeffrey Trent Bernstein

Chloe Marie Britton Naime

Brinley Bruening

Arnaud Buard

Alexander Joseph Callo

Joseph Timothy Capra

Jun Chen

Artur Chuvik

Cooper P Crone

Anthony Cruz

Peter M Daniels

Ryan Russell Dileo

Madeline Doyle

Luyen Duong

Andrew J Esposito

Luke Samuel Fink

Nicholas Andrew Frank

Elan Fullmer

Samuel Ryan Getman

Kara Ai Chun Gorman

Jiayuan Huang

Vian Vishal Jain

Jagger Kachmaryk

Dong Myeong Kang

Jeremy C Kang

Macauley J Kastner

Finnian James Kery

Teagan L Kilian

Cherry Kim

Carl Winston Rice Kjellberg

Justin Kohan

Deanna Summer Koppenjan

Savannah Mae Kreppein

Trevor D Kroells

Nathan Lemoine

Honorata Lubecka

Bei Luo

Lauren Mack

Ryan Patrek Martineau

Michael J McElroy

Ryan A Melick

James Patrick Melitski

Leilah Miller

Wiley Robert Moslow

Beau M Norris

Daniel Panchenko

Nicholas Joseph Papaleo

Nathaniel Ryan Paradis

Tanner Josiah Peck

Corey A Phung

Nicholas Patrick Piano

Alexander Richard

Aidan Riederich

Collin Roche

Jeremy Vinton Rosh

Jeffrey Ryu

Nitish Sachin Satpute

Justin Sauve

Shane Michael Sefransky

William Kaspar Sherfey

Zachary Ryan Shuler

Eric Silfies

Nathaniel Slabaugh

Samuel Theodore Slaiby

Ian Storrs

Matthew K Swanson

Ethan William Tracey

Evan R Tulsky

Alexandra Rose Vaida

Nicholas Valentin

Griffin Riley Vollers

Xu Wang

Michael David Wehrle

Justin H Westhuis

Taj Asim Whitney

Michael Wong

Systems & Information Science

Connor W Gurnham

Stacy Kim

Akshay Ram

Zachary Tyler Williams

Aerospace engineering student Juanitta “AJ” Bekoe ’24 selected to receive a Patti Grace Smith Fellowship.

The Patti Grace Smith Fellowship program connects the nation’s leading aerospace companies with talented Black students. Students receive a summer internship in the aerospace field, a scholarship and personalized mentors. 39 recipients from across the United States were chosen after displaying exceptional aptitude in their chosen discipline in addition to scoring high marks for creativity, ingenuity and a commitment to serving others.

Bekoe is an active member of the National Society of Black Engineers chapter, as well as the American Institute of Aeronautics and Astronautics chapter. She is also a member of Citrus Racing – the college’s Formula 1 Team as part of the Society of Automotive Engineers, where she is a member of the aerodynamics sub-team. Outside of engineering, she is a dancer and choreographer for Creations Dance Company – the first student dance organization founded on campus by 10 African-American women – specializing in multiple dance styles. This spring semester commemorates their 44th year as a dance team. Bekoe plans to continue onto the 4+1 Masters Program in mechanical and aerospace engineering following her senior year. She will be hosted this summer at Ball Aerospace in Colorado as a systems engineering intern.

Syracuse University Ranked #24 for Best Online Graduate Information Technology Programs by U.S. News and World Report for 2022

Syracuse University’s School of Information Studies (iSchool) and the College of Engineering and Computer Science have been recognized as No. 13 in the rankings for Best Online Graduate Information Technology Programs for Veterans and have been ranked No. 24 for Best Online Graduate Information Technology Programs by U.S. News & World Report for 2022.

The full rankings, released earlier today, are available on the U.S. News & World Report website.

The College of Engineering and Computer Science offers online master’s degree programs in cybersecuritycomputer science and computer engineering.

The iSchool offers M.S. degree programs in applied data scienceinformation management and library and information science online.

Civil and Environmental Engineering Alumni Profile: JB Ahmad ’15, G’16

JB Ahmad '15, G'16

Stepping outside of your comfort zone in order to achieve your goals may be a cliché, but it is also a simple truth. Civil and environmental engineering alumna J.B. Ahmad ’15, G’16, started her career journey with a choice to leave her familiar confines of southern California and head to the northeast.

“When I toured Syracuse University, I fell in love with the bright picturesque nature that surround upstate New York. For me, it supplied a feel, an experience, and a look that I didn’t think I would be able to get anywhere else,” said Ahmad. “To be able to experience seasons was something very new to me.”

In addition to being charmed by campus, Ahmad received a research fellowship that enabled her to pursue the degree and type of research she was interested in. Ahmad immediately found Syracuse University had a palpable sense of community, and the College of Engineering and Computer Science offered the right environment for her to develop her skillset.

“It felt like you had this whole extended family that’s rooting for your success,” said Ahmad. “At Syracuse I always felt a push within the department to look ahead and think bigger. I was taught how to learn, the importance of thought diversity, and innovation. My research taught me the value of examining ideas and being at the forefront of my field.”

Most of all it was the one-on-one attention from professors that had the greatest impact. Ahmad is grateful to have had the opportunity to establish deeper relationships with most of her engineering professors, but one connection stands out the most.

“My absolute favorite thing about Syracuse University is Dr. Svetoslava Todorova. I cannot put into words the depth of imprint she has left on my heart and in my life,” said Ahmad. “Her dedication to experiential learning and innovative instruction is unparalleled. She uses simulations and mock trials to promote learning on many levels. She is unbelievably patient and somehow always finds the time to give each student the attention and respect necessary to advance their ideas and knowledge. She serves as a constant reminder for me to appreciate the support and guidance I receive throughout my career, and to be a support for others whenever I can.”

“As a teacher, I remember the students who were different, who stood out from their peers by their personalities and abilities. JB was one of those students. During her studies at Syracuse University, JB distinguished herself with her innate curiosity, systematic problem-solving, and ability to interact with people from diverse backgrounds,” said Todorova. “These skills have helped her excel in her practice as a geotechnical engineer. She currently manages comprehensive billion-dollar projects, both domestic and international. She is a great example of what our students grow to become – leaders in the engineering field.”

In the short time since graduating, Ahmad returned to the west coast, currently serving as a geotechnical earthquake engineer and deputy project manager at AECOM. She has worked on several large, signature consulting assignments, including the multi-billion-dollar high-speed rail project aimed at connecting northern and southern California. Ahmad says her time at Syracuse University equipped her with agility and adaptability mindset necessary to consult on a wide-range of projects—providing innovative solutions for the world’s toughest challenges—and bring that leadership to clients. Her collective experience has helped her lead effectively in ambiguity, consistently execute on goals and priorities, and build long-term, collaborative growth partnerships with clients.

“How you think will affect what you are able to achieve,” said Ahmad. “Instead of thinking I can’t do this, try developing the belief I can’t do it yet. Setbacks can provide a way forward and through effort, learning, and persistence your skills can improve over time.”

Distinguished Professor Pramod K. Varshney Selected to Receive 2021 Shannon-Nyquist Technical Achievement Award from the IEEE Signal Processing Society

Electrical engineering and computer science Distinguished Professor Pramod K. Varshney has been chosen to receive the prestigious 2021 Claude Shannon – Harry Nyquist Technical Achievement Award from the IEEE Signal Processing Society for outstanding contributions in the fields of distributed inference, and data fusion.

The Claude Shannon – Harry Nyquist Technical Achievement Award was established by the Institute of Electrical and Electronics Engineers (IEEE) to honor those who have made outstanding technical contributions to theory and/or practice in technical areas within the scope of the society, as demonstrated by publications, patents, or recognized impact on the field. There are over 400,000 IEEE members in over 160 countries and this award is annually given to one or two individuals.

“I am truly honored to receive this prestigious award. It is a testament to the outstanding research performed by my students, post docs and collaborators in Syracuse and around the globe,” said Varshney.

“I am extremely happy about Professor Varshney receiving this well-deserved prestigious award,” said Electrical Engineering and Computer Science (EECS) Department Chair Jae C. Oh.  “He continues to excel in the field of data fusion and distributed inference. He is a world-renowned researcher whom our EECS department is so proud of. It is no surprise that he receives this prestigious award bearing the names of the giants such as Claude Shannon and Harry Nyquist, the names recognized by every electrical engineer in the world.”

“The Shannon-Nyquist Award is one of the most notable awards in the signal processing field and a world-renowned leader like Pramod is very deserving of it,” said Engineering and Computer Science Dean J. Cole Smith.

Biomedical and Chemical Engineering Professors Mary Beth Monroe and Pranav Soman Discuss the Future of Biomedical Research with WCNY’s Cycle of Health

SU Campus
The Einhorn Family Walk stretches out in front of the Hall of Languages on a autumn day.

Professor Pranav Soman and Professor Mary Beth Monroe joined WCNY’s Cycle of Health show to discuss current research at Syracuse University’s BioInspired Institute and how new materials could make a difference in the medical field.

Click here to watch their episode titled “Biomedical Technology.”

Biomedical and Chemical Engineering Professor Lawrence Tavlarides Retires After Remarkable Academic and Research Career

After 40 incredible years at Syracuse University, biomedical and chemical engineering Professor Lawrence Tavlarides will retire at the end of the Fall 2021 semester. Tavlarides received his BS, MS and Ph.D. degrees at the University of Pittsburgh in the 1960s. After working several years at Gulf Research and Development Center as a research engineer in Pennsylvania and completing his academic studies at the University of Pittsburgh he went through the academic professional ranks at Illinois Institute of Technology for the 12 years from 1969 – 1981. Tavlarides then joined Syracuse University in September  1981 as the chairman of the then chemical engineering and material science department for four years and has continued as a professor. He has received numerous honors and recognitions for contributions to the chemical engineering profession, academia and society. Tavlarides has taught numerous courses in chemical engineering, nuclear engineering and biochemical engineering. He has supervised 45 masters of science students ( 31 at SU ), 34 doctoral students  (23 at SU), and 13 post-doctoral associates at SU over his career.  His contributions with students and colleagues to research includes 1 book, 18 patents, 163 research publications , 2 educational publications and over 300 presentations  at technical meetings and Universities. He was principle investigator of 70 research grants ( 53 at SU) over his career. Tavlarides was also a member of numerous committees on treatment of nuclear wastes for the US Department of Energy and Nuclear Regulatory Commission  in the first decade of 2000. He is proud to complete his career at Syracuse University.

Electrical Engineering and Computer Science Professor Kevin Du Receives “Test of Time” Award from the Computer Security Applications Conference

Electrical engineering and computer science Professor Kevin Du was awarded the Test of Time award at the 2021 Annual Computer Security Applications Conference (ACSAC) for his paper “Privacy-Preserving Cooperative Statistical Analysis” that was originally published in 2001.

“This paper provided a new way to conduct joint computation while protecting data privacy. There were a lot of follow-ups on this approach,” said Du. “Many young researchers told me that they ‘grew up’ reading my papers in this field.”

This is the second time Du has won a Test of Time award. He previously won one in 2013 at the ACM Conference on Computer and Communications Security for a paper titled “A Pairwise Pre-Distribution Scheme for Wireless Sensor Networks” he published with Professor Jing Deng, Professor Yunghsiang S. Han and Distinguished Professor Pramod Varshney in 2003.

Civil and Environmental Engineering Ph.D. Student Takes Second Place at “Science as Art” Competition

Civil and Environmental Engineering Ph.D. student Libin Yang was awarded second place in the Science as Art Competition at the 2021 Materials Research Society Fall Meeting.

Here is Yang’s description of the artwork- “The best way to know the world is to observe, and people throughout history have devoted themselves to observing and recording everything they see, just as Jean-Henri Fabre did 100 years ago, in a garden called Harmas de s érignan, trying to use watercolors to render this ingenious creature, the fungus. This figure is reproduced based on a Scanned Electronic Microscope image of Pleurotus Eryngii mycelium growing on a hardwood substrate. Pleurotus Eryngii belongs to the basidiomycetes has a unique structure of their mycelium called clamp connection ((L. Yang, D. Park, Z. Qin, Material Function of Mycelium-Based Bio-Composite: A Review, Frontier in Materials, 2021)). The logic behind the creation of this art piece is, through SEM, we can get infinitely closer to that tiny and fascinating world. As with the first discovery of a universe in a drop of water, there is always a romantic fantasy of what has never been seen which is to Imagine the universe not only diversification but also uniqueness. These microscopic structures, and the ideals that people seek, reflect the obscure but exact truth of nature.”

Mechanical and Aerospace Engineering Professor Bing Dong Explores How Human Behavior Affects Energy Usage

The growing popularity of solar panels and electric vehicles show that a lot of consumers want an opportunity to reduce their carbon footprint and to reduce reliance on energy generated by fossil fuels. They may have good intentions, but mechanical and aerospace engineering Professor Bing Dong says many consumers who adopted both solar panels and in-home electric vehicle charging are not making the impact they desire.

Solar panels generate electricity only during daylight hours so the charging times of battery energy storage systems and electric vehicles need to be better optimized to release the burden on the power grid.

“Sometimes people who have solar panels and an electric vehicle actually use more energy than before,” says Dong. “Our recent research shows residential solar customers had an 18% increase in their electricity consumption – in part because they viewed it as free. This is contradictory to the intention of installations of distributed energy resources in buildings”

Dong and University of Maryland public policy professor Lucy Qiu received a $500,000 National Science Foundation grant to study the changes in actual electricity consumption and technology-using behaviors of residential consumers due to co-adopting distributed solar photovoltaics, electric vehicle in-home chargers, and battery storage units. Preliminary work from Dong’s team shows that as more people co-adopt solar panels and in-home EV chargers, the effect could be potentially disruptive and challenge management of the United States electrical grid.

“Current models for understanding the electricity consumption behaviors of co-adopters of these technologies have one major limitation – these models are largely engineering based and do not account for actual consumer behaviors,” says Dong. “Consumers actual behaviors are stochastic and can deviate from engineering and economic predictions.”

Small changes like doing laundry during the peak hours of solar electricity production or off-peak hours later at night could help avoid putting a burden on the electrical grid. The NSF wants to know if consumers will change their behaviors and what strategies would help them adapt.

“What we need is the social aspect,” says Dong. “You can do a lot of engineering optimizations, but you need to see how people will actually react and behave.”

Many people operate on fixed schedules that are set by work or school and Dong says this needs to be factored into decisions as well. The research will also look at different behaviors in different geographic areas and socioeconomic groups.

“Social aspects, specifically occupant behavior, are so important in engineering design and operation,” says Dong. “The NSF wants to know how people will actually use energy when they design a smart building. This project will advance the research in grid-interactive efficient buildings and transform the current power grid operations”

The study also has support from National Grid and the Energy Power Research Institute in California.

Electrical Engineering and Computer Science Alumni Spotlight – Niket Kothari G’02

In his current role as a partner engineering manager at Microsoft, Niket Kothari G’02 is responsible for the design, provisioning, and operations of the company’s worldwide regional and data center networks. Since starting at Microsoft in 2014, Kothari helped transform the business by leveraging the power of automation to build and manage infrastructure at scale. He currently manages a team of network engineers, software engineers and data scientists around the world.

“We worked to identify key metrics, build software systems, and deliver efficiencies in operational excellence for the hyperscale network infrastructure,” said Kothari. “We were also able to enable new cloud offerings and multiple other initiatives that reduced the overall network cost of goods sold.”

Prior to his current role, Kothari spent 7 years at Google, and 5 years at 2 different start-up companies focused on building infrastructure to support software-as-a-service offerings to international customers. During his professional tenure, Kothari has worked across different functional areas related to large scale infrastructure, with experience in content delivery network rollout, long-term network planning, infrastructure acquisition, and building networks across the globe.

“I’m passionate about solving complex technical problems along with building and mentoring high performing teams with diverse skills and backgrounds,” said Kothari. “I’m actively involved in helping recruit the next set of talent for Microsoft.”

Syracuse University and the faculty at the College of Engineering and Computer Science played a key role in helping Kothari build the strong technical foundation that he has leveraged through his professional career.

“I came to the United States to earn my degree in 2000 and Syracuse University is what I now consider my home,” said Kothari.

He met his wife Bhumika Kothari G’02 while he was at Syracuse University.

“We spent many hours working together on assignments in the lab, while also competing for the on-campus jobs and assistantship opportunities at the University,” said Kothari.

He and his wife hope their two daughters will follow in their parents footsteps and attend Syracuse University.

“If they are successful with managing its cold winters,” said Kothari with a laugh.

Biomedical and Chemical Engineering Student Wins First Place at BioInterface Symposia Student Pitch Competition

Natalie Petryk ’21, G

Biomedical and chemical engineering graduate student Natalie Petryk ’21, G ’22 won first place in the student pitch competition at the BioInterface Symposia 2021. Petryk is a part of biomedical and chemical engineering Professor Mary Beth Monroe’s research team and submitted a short pitch on tuning pore structure of polyurethane shape memory polymer (SMP) foams using EPA recommended foaming agents and characterizing the effects of pore structure on blood and cell interactions.

Below is a summary of her experience at the BioInterface Symposia, the pitch competition and her research.

“Over two years ago, I started working in Dr. Mary Beth Monroe’s lab as an undergraduate student simply wanting to gain more research experience. Never did I think my research in her lab would translate into the love and passion for biomaterials-related research that I have now. Now, as a Bioengineering M.S. student in the Monroe Biomaterials Lab, I have been able to further explore my research interests and build upon exciting work that I was fortunate to present in the BioInterface Student Pitch Competition.

Having the opportunity to share my current research as part of the BioInterface Student Pitch Competition was a fun, invaluable experience that I am grateful to have taken part in. It was fascinating to learn more about advances being made in biomaterials research and industry from both students and professionals in the field. Presenting my research in the form of a pitch truly allowed me to reflect on the significance of my work, because I was focused on conveying its potential impact to a broader audience. Overall, attending the BioInterface Workshop and delivering my pitch confirmed my interest in biomaterials and my future career goals.

Polyurethane shape memory polymer (SMP) foams are “smart” materials that can switch between a primary and secondary, deformed shape when exposed to an external stimulus.[1] This behavior allows SMP foams to have wide-ranging biomedical applications in areas such as drug delivery, tissue engineering, and wound healing; in these applications, tuning the pore structure of SMP foams can greatly affect drug release rate, cell proliferation and migration, and hemorrhage control, respectively.[2]–[5] The ease of tuning both pore size and interconnectivity could greatly aid in future commercialization efforts of SMP foams for multiple uses. My work explored off-the-shelf solvents and their use as physical blowing agents to safely and easily tune pore structure.

Physical blowing agents are incorporated during foam synthesis, and unlike chemical blowing agents, they do not affect foam chemistry; they boil off during foaming, forming bubbles that result in pores throughout the polymer.[6] Enovate is a physical blowing agent commonly used in gas-blown foaming, but the Environmental Protection Agency (EPA) considers its use unacceptable because it is a hydrofluorocarbon that can contribute to global warming.[7] It also comes from a single supplier, making commercial use risky.

We selected three physical blowing agents that are both commercially available and recommended for use by the EPA in their Significant New Alternatives Policy (SNAP) Program: acetone, dimethoxymethane (methylal), and methyl formate.[8] We found that increasing the volume of solvent added during foam synthesis (1 mL, 2 mL, and 3 mL) increased the interconnectivity between pores while maintaining chemical and thermal properties of the SMP system. This work provides a safe and easy method to create a more open, porous structure that could be tailored for different applications.

More recently, I explored the effects of tuning foam pore structure on blood and cell interactions with foams synthesized with methyl formate. We found that foams with more interconnects (i.e., synthesized with a higher volume of methyl formate) had thrombus formation after 1 hour of incubation in anticoagulated blood, which suggests that the clotting ability of these foams could be harnessed in traumatic wound healing applications. We also saw that larger pore size and fewer interconnects among control foams and foams synthesized with 1 mL methyl formate resulted in higher cell attachment. This result could be an effect of the higher overall surface area that cells could attach to, an important consideration for designing tissue engineering scaffolds.

Future work involves synthesizing a completely off-the-shelf foam to make the commercialization of polyurethane SMP foams more feasible. This research will require substituting our current single-supplier catalysts with commercially available options, as well as synthesizing our own surfactant with off-the-shelf components. I also hope to look at blood perfusion through foams with different levels of interconnectivity and eventually explore vascularization as a function of foam interconnectivity.

My work in the Monroe Biomaterials Lab has opened my eyes to the potential of biomaterials. I am extremely thankful for Dr. Monroe’s support and guidance over the last 2 and half years, as my research under her has shaped my future career goals; after completing my master’s, I plan to pursue a Ph.D. and eventually work in industry doing biomaterials R&D.

I would also like to thank and acknowledge Grace Haas and Anand Vakil for their help with this project. Lastly, I am thankful for opportunities like the BioInterface Student Pitch Competition to be able to share my work with broader audiences that are also passionate about biomaterials.“

References:

[1]         H. Y. Jiang, S. Kelch, and A. Lendlein, “Polymers move in response to light,” Adv. Mater., vol. 18, no. 11, pp. 1471–1475, Jun. 2006, doi: 10.1002/adma.200502266.

[2]         U. T. Gunathilake Sampath, Y. Chee Ching, C. Hock Chuah, J. J. Sabariah, P.-C. Lin, and R. Luque Alvarez de Sotomayor, “materials Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites,” doi: 10.3390/ma9120991.

[3]         G. Lemon, Y. Reinwald, L. J. White, S. M. Howdle, K. M. Shakesheff, and J. R. King, “Interconnectivity analysis of supercritical CO2-foamed scaffolds,” Comput. Methods Programs Biomed., vol. 106, no. 3, pp. 139–149, 2012, doi: 10.1016/j.cmpb.2010.08.010.

[4]         B. Otsuki, M. Takemoto, S. Fujibayashi, M. Neo, T. Kokubo, and T. Nakamura, “Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: Three-dimensional micro-CT based structural analyses of porous bioactive titanium implants,” Biomaterials, vol. 27, no. 35, pp. 5892–5900, Dec. 2006, doi: 10.1016/J.BIOMATERIALS.2006.08.013.

[5]         “BMP‐Induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: Topology of osteogenesis.” https://onlinelibrary.wiley.com/doi/epdf/10.1002/%28SICI%291097-4636%28199802%2939%3A2%3C190%3A%3AAID-JBM4%3E3.0.CO%3B2-K (accessed Sep. 01, 2021).

[6]         K. H. Choe, D. L. Soo, W. J. Seo, and W. N. Kim, “Properties of rigid polyurethane foams with blowing agents and catalysts,” Polym. J., vol. 36, no. 5, pp. 368–373, 2004, doi: 10.1295/polymj.36.368.

[7]         W.-T. Tsai, “An overview of environmental hazards and exposure risk of hydrofluorocarbons (HFCs),” Chemosphere, vol. 61, no. 11, pp. 1539–1547, 2005, doi: https://doi.org/10.1016/j.chemosphere.2005.03.084.

[8]         “Substitutes in Flexible Polyurethane | US EPA.” https://www.epa.gov/snap/substitutes-flexible-polyurethane.

Engineering and Computer Science, Upstate Medical University Faculty Awarded National Institutes of Health Grant for Catheter Research Project

For the 75 million people who require a urinary catheter, urinary tract infections are a serious concern. Catheters are prone to colonization by bacterial and fungal pathogens, which causes antibiotic-resistant infections. An infection can also lead to pH changes in the urine and block a catheter due to stone formation with potentially fatal consequences. Catheter associated urinary tract infections (CAUTIs) that are antibiotic resistant cause 13,000 deaths in the U.S. each year.

College of Engineering and Computer Science professors Dacheng Ren, Stevenson endowed professor of biomedical and chemical engineering and associate dean for research and graduate programs; Teng Zhang, assistant professor of mechanical and aerospace engineering; and Huan Gu, research assistant professor and Upstate Medical University’s Dmitriy Nikolavsky, MD, associate professor of Urology, were awarded an National Institutes of Health (NIH) R01 grant for a project aiming to engineer a new urinary catheter using smart biomaterials to reduced catheter associated complications.

“Conventional antibiotics commonly fail to eradicate infections associated with medical devices because of the remarkable capabilities of microbes to colonize these surfaces and form drug-resistant biofilms. To solve this challenging problem, we need new strategies that can provide long-term protections. This R01 project gave us an exciting opportunity to do exactly that,” said Ren, the principal investigator of this project.

Ren’s lab has developed a new strategy designed to make catheters smarter and more resistant to infection. They successfully created micron-sized pillars with supermagnetic nanoparticles on the tip so the pillars can beat in response to an electromagnetic field generated using an insulated copper coil embedded in the catheter wall. By controlling the on and off of an electric current, they could turn the magnetic field on and off, and thus control the beating frequency and beating force of the pillars. This strategy (active topography) worked well, as these moving pillars prevented biofilm formation of multiple bacterial species by up to 99.9% compared to flat control surfaces. A prototype catheter with active topography remained clean for 30 days while the control catheters were blocked by biofilms of uropathogenic Escherichia coli within five days in an in vitro test with flow of a medium mimicking urine. Their study was published in a recent issue of Nature Communications.

Now Ren, Gu, Zhang and Nikolavsky will move forward and study the mechanism of infection control by such active topographies, and further engineer their catheter porotype for in vivo tests in this R01 project. By optimizing micron sized pillars on the catheter wall, they hope to develop a self-cleaning catheter that would be much safer for long term use.

“This strategy is inspired by the motile cilia in human airways that protects our lungs from foreign particles during respiration,” said Gu. “Thanks to the development in materials and surface engineering, we can replicate this defense strategy, make it more robust and adaptable, and apply it to address challenges such as biofilm-associated urinary tract infections in this project.”

Numerical simulations from Zhang’s lab and the collaboration with Nikolavsky in Upstate Medical University’s urology department are key components to the potentially groundbreaking work.

“Biofilms are highly complicated biological materials with active bacteria embedded in polymer networks. This poses challenges and provides opportunities to integrate mechanics modeling and simulations with well-controlled experiments to uncover the working mechanism and design principles of medical devices.”

Zhang has been collaborating with the Ren lab prior to this award and he is also a co-author of the Nature Communications paper.

If successful, the findings from this study may also help solve other infections that involve microbial biofilms, especially those associated with medical devices.

“I am very excited about this design of smart catheters, Bacterial colonization and biofilm formation on catheters, stents and other implantable devices is an enormous problem in medicine,” said Nikolavsky.  “Creating such smart surfaces on catheters that would actively expel pathogens, could potentially prevent bacterial colonization, catheter-associated urinary tract infections and may save patients with chronic catheters from bladder stone formation and recurrent catheter encrustation and clogging. I expect this will improve medical care and have positive effect on quality of life for many patients and prevent some of the common urological emergencies.”

Lights, Camera…Cybersecurity!

Electrical engineering and computer science professor Kevin Du wanted to up the production value of the cybersecurity instruction videos he has been posting to YouTube and decided to construct a studio inside his lab space.

“I used to have one in home at my basement but that one has a problem because my family just walked around,” said Du. “So I decided I’m just going to build one in the corner of the lab.”

Introducing the Inaugural Patrick P. Lee Scholars in the College of Engineering and Computer Science

Lee Scholars

Syracuse University’s College of Engineering and Computer Science is honored to announce our inaugural Patrick P. Lee Scholars. The Lee Foundation’s largest scholarship program supports students at institutions of higher learning who are pursuing careers in engineering and other technical fields.

Joli Cacciatore is a fourth year Civil Engineering student from Niagara Falls, NY. Since arriving at SU she has been part of the ECS Ambassador Scholars program which conducts outreach to local middle schools to foster interest in STEM and provide positive educational role models. She is a member of the SU student chapters of the National Society of Professional Engineers, the Society of Women Engineers, and the American Society of Civil Engineers.

Stacy Kim is a fourth year Systems Information Science major from Staten Island, NY. She has several leadership positions in campus organizations including Vice President of the Society of Asian Scientists and Engineers and Community Service Chair for Kappa Theta Pi through which she conducted outreach to local high schools to help with the transition to online learning. Since 2019 she has worked for the Barnes Center in health promotion for her fellow students and during the pandemic has been helping administer and process COVID tests on campus.

Aymeric Destrée is a third year Civil Engineering major from San Marcos, CA. He is a member of the Ambassador Scholars program and enjoys working with children in the Syracuse public school system to introduce engineering concepts and problem solving skills through fun after school activities. He plans a career in public infrastructure and is particularly interested in transportation and urban design.

Olivia Kmito is a third year Bioengineering student from Bridgewater MA. She is a student athlete on the SU Gymnastics team and a member of the Alpha Xi Delta sorority and the Society of Women Engineers. She has a long term commitment to the March of Dimes organization inspired by a personal connection to their work. Following in the footsteps of her father, an SU engineering alum, she believes an engineer must value “integrity, leadership, and service” and most of all take seriously the trust that their colleagues, their clients, and the public place in them and their work.

Biomedical and Chemical Engineering Professor Shikha Nangia Selected as a Rising Star by the American Chemical Society

Biomedical and chemical engineering Professor Shikha Nangia has been selected as a recipient of the American Chemical Society’s Women Chemist Committee (WCC) 2022 Rising Star Award. The award recognizes nine women scientists who have demonstrated excellence in the scientific enterprise and outstanding promise for contributions to their respective fields.

Nangia will receive her award and present her recent research on the blood-brain barrier at the 263rd National Meeting of the American Chemical Society in March of 2022.

“Shikha is an amazing researcher and colleague. Her group’s computational work to understand the architecture of the blood-brain barrier is advancing our fundamental understanding of its permeability and has the potential to lead to advances in drug delivery to the brain,” said biomedical and chemical engineering Department Chair Juile Hasenwinkel. “The department is very happy and proud to see her cutting edge work recognized with this award.”

“This is a well-deserved honor for Shikha. We have known she was a rising star for a while here at Syracuse University and I am very happy to see her get this recognition from the American Chemical Society,” said College of Engineering and Computer Science Dean J. Cole Smith.

Tracking Wildfires

Professor Amit Sanyal

Over the past forty years, wildfires have become more common, more destructive and more difficult to contain. In dry conditions, a spark can turn into a forest fire covering thousands of acres over the course of a few hours. Trying to contain a fast-moving fire is a challenge for firefighters, emergency responders and communities who may have just minutes to evacuate. Fires can travel up to six miles per hours in forests and up to 14 miles an hour in dry grass. If terrain slopes upwards, those speeds can double.

Real time monitoring of fire conditions and movement could help firefighters improve containment strategies but getting data from manned or unmanned aircraft above a raging forest fire has been a challenge.

“This is not just flying in isolation,” says mechanical and aerospace engineering Professor Amit Sanyal. “There is hot air from fires and different air currents being induced. Sensors also have to deal with smoke, ash, burning leaves or leaves about to catch fire.”

Even when an unmanned aerial vehicle (UAV) can be put in the air near a fire, getting data from multiple sensors and input systems back to fire crews on the ground in real time becomes a processing challenge. Especially for a small UAV where load restrictions limit the size and weight of any on-board processing systems.

An interdisciplinary collaboration between Sanyal and two faculty members from The Ohio State University has received a National Science Foundation (NSF) National Robotics Initiative grant to explore the integration of unmanned aerial systems (UAS) into prescribed wildland burn projects. Mechanical and aerospace engineering Professor Mrinal Kumar and forest ecosystem analysis and management Professor Roger Williams from The Ohio State University will be Co-Principal Investigators with Sanyal on the project. Syracuse University will receive $536,983 from the NSF grant to support Sanyal’s research.

Research has shown that climate change has led to warmer, drier conditions in many parts of the world. With reduced snowpack and precipitation, many forests and areas that are already susceptible to wildfires will become even drier. The U.S. Forest Service predicts the percentage of land area determined to be experiencing extreme drought conditions will increase by 30 percent by 2090.

The research team will explore how topographic, atmospheric and forest fuel factors in temperate hardwood forests influence fire intensity and rate of spread through real-time data activation in fire behavior models. Sanyal has extensive research experience with UAV control systems and sees this project as a natural evolution of where his interests have been going.

“A UAV in close proximity to a fire needs dependable and robust control schemes,” says Sanyal.  “A non-linear model-free control system has a lot of potential.”

The system Sanyal envisions could allow an UAV to be able to deal with the known physics (elevation, topography) and also rapidly adapt to the unknown physics it might face (sudden and extreme changes in heat, winds or air currents.)

“In order to do that in real time, we need to learn from the data really fast and compensate for it,” said Sanyal. “I think it would be interesting to consider what is known and what is unknown in an ultra-local model of the multi-input, multi-output system that is suitable for implementation on a small onboard processing system.”

The Ohio State University will provide the team with the ability to do controlled burns and test their systems in actual wildland fire conditions. Their work will help provide real time data to firefighters and fire coordinators working to manage hazardous situations and keep people around the world safe.

“Autonomous systems are an area of strength for Syracuse University researchers. This NSF grant demonstrates the potential of cross-disciplinary and multi-institutional research for finding solutions to pressing problems,” says Ramesh Raina, interim vice president for research.

“It is a human problem and a wildlife problem. It would be great if we can make a difference in how we deal with this problem,” says Sanyal.

The Future of Flying

Civil and Environmental Engineering Graduate Students

Civil and environmental engineering Ph.D. students Parisa Sanaei and Michael Ammoury were selected for graduate research awards from Transportation Research Board’s Airport Cooperative Research Program (ACRP).  The ACRP awards support research to improve the quality, reliability, safety, and security of the United States airport industry.

Ammoury’s research will focus on improving the resilience and sustainability of airports by combining artificial intelligence, internet of things, and other smart technologies.

Many airports already have facilities and sensors that monitor environmental functions, but Ammoury will explore how those existing and novel technologies can work together to improve the environmental and resilience aspects in airports.

“Airports are like small smart cities. The digital infrastructure in airports needs to communicate seamlessly with each other,” said Ammoury.

“Existing indoor air quality sensors can be combined with foot traffic sensors to optimize indoor air quality and reduce airborne disease transmission,” said Ammoury. “Working together, they can reduce the negative environmental impacts while also augmenting safety and mitigating the impacts of disruptions.”

Sanaei’s research will explore the use of emerging technology to improve airport runway safety. Current regulations require that airport runways be inspected at least once a day for debris, damage, or contamination. These are often visual inspections performed by airport maintenance staff.

“A minor crack or small piece of debris may seem insignificant, but each instance can be the beginning of serious pavement issues that have the potential to cause hazardous events to occur,” said Sanaei.

By taking advantage of evolving remote sensing technologies, such as digital photogrammetry and laser scanning, Sanaei believes airport authorities can not only create and implement a cost-effective runway operation and maintenance program but also improve overall safety.

“Runway inspection procedures could be more accurate and less time-consuming through automation, which may offer a great potential in prolonging the service life of runways and meeting the level of service requirements with greater efficiency,” said Sanaei. “My work will focus on developing an integrated automated system offered by emerging technologies for runway inspection procedure.”

The ACRP Graduate Research Award offers a $12,000 stipend as well as the opportunity for the student’s final research paper to be published in the Transportation Research Record journal and to present their work at the Transportation Research Board’s 2023 Annual Meeting.

Sanaei and Ammoury are grateful for the support they have received from their advisor Professor Baris Salman and the civil and environmental engineering department faculty and staff.

“We are extremely happy for receiving these prestigious awards. In total only nine winners were selected from all over the country, and it makes us proud to know that that both of our proposals were accepted. The American Society of Civil Engineers (ASCE) recently graded our nation’s aviation infrastructure with a “D+”. There is significant room for improvement when it comes to management and maintenance of airports. We anticipate that our projects will be helpful in addressing these gaps,” said Salman.

“The department is incredibly supportive and providing us with access to incredible facilities,” said Ammoury.

“Their support has given us this incredible opportunity to tackle practical real-world problems and design solutions for the airport sector,” said Sanaei.

Department of Electrical Engineering and Computer Science Announces New Faculty

The College of Engineering and Computer Science is proud to announce four new faculty in the Electrical Engineering and Computer Science Department.

Jean-Daniel Medjo Me Biom

Jean-Daniel Medjo Me Biomo joins the College as an Assistant Teaching Professor in Fall 2021. At Syracuse University, Medjo Me Biomo will teach classes in electrical engineering and computer science, including but not limited to Electrical Engineering Laboratory I and Linear Systems Laboratory. Prior to joining Syracuse University, Medjo Me Biomo was a Sessional Lecturer (2019-2021) and a Postdoctoral Fellow (2020-2021) in the department of Systems and Computer Engineering at Carleton University, Canada. In his teaching capacity, he taught various courses, including Digital Communications, Algorithms and Data Structures, Computer Systems Design, and Probability and Random Processes for Engineers. In his postdoctoral researcher capacity, Medjo Me Biomo’s research work has focused on AI-enabled satellite networks within the Optical Satellite Communications Canada (OSC) framework of National Research Council Canada (NRC). He contributed to the 2021 edition of the “IEEE International Network Generations Roadmap” for satellites. Prior to that, as a graduate student, his research focused on unmanned aerial vehicles’ ad hoc networks. He has published 10+ conference and journal papers. He is an IEEE member. Medjo Me Biomo received the B.Eng degree in Electrical Engineering from Polytechnique Montréal in 2010. He received the M.A.Sc and Ph.D. degrees, both in Electrical and Computer Engineering, from Carleton University in 2014 and 2019 respectively.


Nadeem Ghani

Nadeem Ghani (he/him/his) joins the College as an assistant teaching professor in fall 2021. At Syracuse University, Ghani will teach introductory classes in Computer Science. Prior to joining Syracuse University, Ghani spent many years in Silicon Valley, working at Netflix, Salesforce, IBM and various startups. Ghani earned a Ph.D. in Biophysics in 1995 from The Ohio State University, and a B.S. in Physics in 1988 from Caltech.


Jung-Eun Kim

Jung-Eun Kim joins the College as a tenure-track assistant professor in Fall 2021. Prior to joining Syracuse University, Kim was an associate research scientist in the Department of Computer Science at Yale University. Kim’s research focuses on Cyber-Physical Systems for applications ranging from safety-critical systems to machine learning/AI. Especially the primary interest lies in systems which require safety and timing guarantees and predictability. She is a Co-PI on an NSF SaTC (Secure and Trustworthy Cyberspace) CORE (2020-2023.) She was awarded GPU Grant from NVIDIA Corporation, selected for the MIT EECS Rising Stars, and a recipient of the Richard T. Cheng Endowed Fellowship. She received her PhD degree in Computer Science at the University of Illinois at Urbana-Champaign, and her MS and BS degrees in Computer Science and Engineering at Seoul National University, Korea.


Joao Paulo

Joao Paulo Oliveira Marum is joining the College as an assistant teaching professor. He earned both his MS and his PhD in Computer Science from the University of Mississippi (USA). His research is focused in using multi-paradigm programming to solve accuracy issues on User Interactive System, especially in Virtual and Augmented Reality. Professional member of the Association of Computing Machinery (ACM) and Institute of Electrical and Electronical Engineering (IEEE), IEEE Computer Science Society and the Order of Engineer. For 5 years he was a graduate instructor at the University of Mississippi, teaching programming languages for major and non-major students. He was also a researcher at the Hi5 (High FIdelity Virtual Environments) laboratory at the University of Mississippi. Articles published in ICAT – EGVE (Eurotronics – Virtual Environments), IEEE SouthEastCon, ACM SouthEast and IEEE VR (Most prominent congress in the area of Virtual Reality).

Mechanical and Aerospace Engineering Ph.D. Student Awarded National Science Foundation INTERN Grant for Research at Oak Ridge National Laboratory

Sajag Poudel

Mechanical and aerospace engineering Ph.D. student Sajag Poudel and Professor Shalabh Maroo in the College of Engineering and Computer Science were awarded a National Science Foundation (NSF) INTERN grant to support Poudel’s research internship at the Oak Ridge National Laboratory for the Fall 2021 semester.

Oak Ridge will provide Poudel with the opportunity to explore potential ways to reduce energy waste from power generators and improve thermal management in buildings.

“We are hoping to break the limit of where we can go,” said Poudel. “It will help us be able to solve different issues related to energy.”

Poudel will be researching new types of devices that can be used in heat transfer and energy management to enhance efficiency. Oak Ridge has some of the best facilities in the world for testing energy conversion devices up to 1500 degrees Celsius.

“We can go to the micron or nanometer scale to understand the physics of heat transfer as we develop new ideas,” said Poudel. “If we can reduce the associated losses, a lot of energy can be saved.”

“This is a wonderful opportunity for Sajag to further advance his skillset, knowledge base and experience before he graduates with his doctoral degree next year,” said Maroo. “He took the initiative in reaching out to national labs, NASA and industry for internship opportunities and I applaud his efforts. Sajag also had interest in collaborating from NASA AMES but did not pursue further as it was remote-only. I am thankful to NSF for supporting his internship at Oak Ridge.”

Mechanical and Aerospace Engineering Professor Teng Zhang Develops Model to Shape the Future of Pasta and Sustainability

Pasta dough being stamped

Like pasta, the pursuit of global environmental sustainability takes many shapes. In a paper titled “Morphing Pasta and Beyond” published as the cover story in the May 2021 issues of Science Advances, researchers found a way to redesign noodles as flat structures that transform into three-dimensional shapes when cooked. Considering humanity’s appetite, it is a breakthrough that could move us toward a green future.

After it is cooked, the noodles look and taste like traditional pasta, but the flat redesigned noodles can be fit into more compact packaging. Smaller packages requiring less material would reduce waste and save space during transportation. Moreover, these shape-shifting carbs could lead to lower carbon emissions.

“Cooking pasta takes energy. This method can shorten the cooking time and that could also contribute to sustainability,” said mechanical and aerospace engineering Professor Teng Zhang who was a co-author of the study.

The project has been a long-term collaboration between Zhang and Lining Yao, Director of the Morphing Matter Lab at Carnegie Mellon University (CMU), other researchers at CMU and Zhejiang University. To achieve morphing, grooves are strategically pressed into the surface of smooth, flat dough. In boiling water, the modified grooved side of the dough expands less than the smooth side thereby morphing the dough into more familiar contorted and tubular noodle shapes.

Yao’s team learned grooves in the pasta would be an effective way to control the shape morphing, but initially they could not explain why. Zhang developed a computer model that explained why altering the surface texture would work.

“The final product can have an impact on sustainability, and to achieve this morphing it is an excellent mechanics problem,” said Zhang. “The modeling and simulation of pasta morphing was very challenging. Sometimes you would run a simulation and the simulation would just stop. It took us a long time to find the right platform and the right code to set up the model to get a result.”

Zhang’s model uncovered the working mechanism of the research team’s grooved-based approach, which could be a practical solution for the food industry. The next challenge from a modeling standpoint will be to develop a more complex and accurate model that will look at how production of the pasta and cooking technique influence the material structure.

“Now we want to improve the accuracy of the model. How the manufacturing process and the cooking process will modify the material property,” said Zhang. “We want to include the whole process in the modeling platform.”

Zhang’s research was funded by the National Science Foundation.

Five Questions with IBM Senior Vice President Bob Lord ‘85

IBM Senior Vice President Bob Lord

2021 Engineering and Computer Science convocation speaker Bob Lord ’85 is IBM’s Senior Vice President, Worldwide Ecosystems.

He is focused on ensuring the success of IBM customers, partners and developers using the company’s hybrid cloud and AI software as well as The Weather Company, which is an IBM business.

At the center of Bob’s work is a commitment to the open source community. He is responsible for IBM’s participation and leadership in dozens of open source communities; contribution and donation of open source code; and overall industry advocacy. A prime example is Call for Code, which Bob launched in 2018 to give developers and problem solvers access to IBM tools and technologies as a means to solve global, societal challenges. Since launch, over 400,000 developers and problem solvers from over 179 nations have built solutions for an immediate and lasting impact in society.

We asked Bob five questions about his experience at Syracuse and advice for current undergrads:

How did you know Syracuse University was the best place for your undergraduate degree?

From the moment I stepped on campus nearly four decades ago, I knew Syracuse was the place for me.

Without question it was the perfect undergraduate environment because it provided so many opportunities for me to discover what I was most passionate about. I wasn’t pigeonholed into one area of study at the tender age of 18, but rather was encouraged to take advantage of the many options available at SU. And without that breadth of exposure, who knows… maybe instead of speaking to new graduates of the College of Engineering and Computer Science this past weekend I might have become a dentist or criminal defense lawyer, which I explored as a freshman. SU helped me realize what I wanted to become, but more importantly allowed me to decide what I didn’t want to do.

What are some of your favorite memories from your time on campus as a student?

There are so many great memories. I’ll start at the beginning: move-in day my freshman year. My dad dropped me at Kimmel Hall alone for the first time in my life. But just as that reality began to set in, my new roommate arrived, followed by a slew of other new students. I quickly realized I was surrounded by people who were going through the same thing as me. That was the day I began to build some of the most enduring friendships of my life… friendships that remain strong to this day and I will be eternally grateful for.

It was also the day that I was first introduced to a population that was much more diverse than my Catholic neighborhood in Northern New Jersey. It was the beginning of my understanding of the power of diversity and inclusion. The more I learned from others, the more critical my thinking became and the more I grew as a human being.

How did your Syracuse experience help you in the early stages of your career?

I credit Syracuse for getting my career started. I was fortunate to be accepted into the engineering co-op program, so in the summers I would work at General Motors as a shift supervisor and engineer. Being immersed in that setting had a powerful effect on me. It validated that I was absolutely on the right career path, exposed me to a high-performance workplace, and gave me the relevant experience and confidence I needed to ultimately land a full-time position as an industrial engineer at Corning Glass Works.

I had countless experiences as an undergrad that equipped me to succeed in my first job and that I draw upon to this day. For instance, thanks to the rigorous and challenging course load that had me in Bird Library so much, I developed the skill of managing massive volumes of work, prioritizing what required immediate attention and developing a systematic approach to completing assignments.

What are some of the lasting influences Syracuse University has had on you?

That’s easy. I met my wife of 29 years, Robin, at Syracuse. Talk about a lasting influence! Both of my daughters also went to SU, and in fact my youngest graduated this weekend with a dual degree from the Falk and Whitman schools. I suppose you could say orange runs through the Lord family and I wouldn’t want it any other way.

I also attribute much of my development as a person and as a leader to what I learned during my formative years at Syracuse. It’s where the seeds of what I now refer to as a “growth mindset” were planted – something I strive to embrace in both my personal and professional life. It can be summarized by three core tenets:

First, be a problem solver, not a problem explainer. The world doesn’t need more people to talk about the problems we’re faced with; we need people who will take action. This was ingrained in me at the College of Engineering and Computer Science, where we were presented with problems and held accountable to finding solutions. And it’s why I’m so passionate now about initiatives like Call for Code.

Second, learn it all, don’t know it all. At Syracuse, I got a healthy dose of humility early on, and it became quickly apparent that I had SO much to learn. Once I accepted that, I experienced exponential growth, and I’ve committed myself to being a perpetual student to learn all that I can.

Third, be open and transparent. Some of the best development of my life has come from constructive criticism. It’s something I was no stranger to at Syracuse and I’ve found that accepting feedback as helpful guidance has gotten me a lot further than being defensive and viewing it as an attack. On the flipside, as a manager I take care to provide candid feedback to those around me so they may also grow.

What advice would you give to current engineering and computer science students?

I cannot emphasize enough to current students that they have a golden opportunity. They have the ability to take advantage of all this world-class institution has to offer, from renowned educators and facilities, to innovative programs and activities, and an array of courses and experiences. Seize that opportunity!

Go beyond your comfort zone, keep an open mind, and challenge yourself. Take electives that force you to learn something completely different and trigger another part of your brain. Explore ways you can get exposure to the industry’s best and brightest, like through the Blackstone LaunchPad & Techstars. Join clubs and pursue activities that pique your interest or that you’re even just mildly curious about because it may ignite a passion you didn’t know existed.

All of these things will contribute to the quest I encourage you all to pursue: to find your purpose, and to begin charting a path to develop skills you can apply in service of that purpose.

This is perhaps the only time in your life you’ll be able to partake in such a wide range of experiences in a condensed period of time. Don’t let it pass you by. Trust me, you’ll find yourself frequently drawing upon those experiences for years to come.

A Lifetime of Service: Remembering Dean Emeritus Bradley Strait ’58, G’60, G’65

Dean Emeritus Brad Strait

For many years Dean Emeritus Bradley Strait ’58, G’60, G’65 led the Syracuse University academic procession at Syracuse University’s commencement as the Mace Bearer. The Mace Bearer is a role that recognizes the importance of the University’s mission as an education institution. It was also a role that symbolized Strait’s relationship of more than 60 years with the College of Engineering and Computer Science, helping lead students, faculty, research and academic programs forward.

“Brad exemplified what it means to be Orange.  I do not know anyone else who commanded such complete respect across campus than he did,” says electrical engineering and computer science Professor Shiu-Kai Chin ’75, G’78, G’86.

Strait passed away in his hometown of Canandaigua, NY on May 6th, 2021. He leaves behind an unparalleled legacy as a student, professor and as dean of the College from 1981-1984 and again from 1989-1992.

He came to Syracuse University after serving in the U.S. Navy from 1951-1955 as an electronics technician. After being discharged, he studied electrical engineering. Syracuse University Life Trustee Charles Beach ’58, G’67 was his roommate and fraternity brother in Phi Gamma Delta. They remained close friends for the next 67 years.

“He really bled orange. He loved Syracuse University, he loved teaching and loved his students,” says Beach.

While he was an undergraduate student, Strait met Nancy Brown, who was a student in the University’s College of Fine Arts. Brad and Nancy married in 1957 and graduated in 1958. They moved to the Syracuse suburb of Jamesville where they raised their children, Andy and Martha. Brad and Nancy later established the Jamesville Museum which collected important pieces of the town’s history and memories of its neighbors.

After graduation, Strait worked briefly at Eastman Kodak before returning to Syracuse for a master’s degree and his doctorate. He then became a faculty member known for taking extra time to work with students and young researchers and making sure they were successful in all aspects of their life, not just the classroom.

He was a member of the university’s world-renowned electromagnetics research group and became chair of the then department of electrical and computer engineering in 1974. One of his early hires was current electrical engineering and computer science Distinguished Professor Pramod K. Varshney.

“Brad did a marvelous job in his role as the leader of a premier department,” says Varshney. “As department chair, he established a close relationship with the Rome Air Development Center (now Air Force Research Laboratory) resulting in significant research funded by US Air Force at Syracuse University.”

“Brad was my first academic advisor when I came to SU in the Fall of 1971.  He remained a near and dear mentor throughout my academic career,” says Chin. “His advice to me was always straightforward and direct. Always do what is best for the academic program, always teach a course even if you are in a leadership role and remember that the people you see on the way up are the same people you see on the way down.”

Strait went on to serve as the Dean of the College of Engineering and Computer Science from 1981-1984 and 1989-1992. He was a relentless advocate and recruiter for Syracuse University, always looking to bring the best students and faculty to Central New York.

“Brad was one of the main reasons why I came to Syracuse University as a faculty member,” says mechanical and aerospace engineering Professor Ed Bogucz. “Brad’s personality was a big factor.”

In addition to recruiting for academic roles, Strait was always recruiting for the College’s softball team and a weekly basketball league.

“Many of the players, including myself, were young people who looked at Brad as a role model of how to live an active and fulfilling life balancing family, employment, faith and active recreation,” says mechanical and aerospace engineering Professor Alan Levy. “On the court Brad was a fierce competitor and, like all of us, he liked to win. But he was gracious in victory and defeat. Brad played in the game until he was about 80 years-old and he never lost his spark racing up and down that full court.”

Strait took pride in building connections across the university through softball games played against other colleges and departments.

“A lot of relationships were cemented by getting to know people during those games,” says Beach.

Always looking forward, Strait expanded collaborations with industry partners and worked to connect them with current research activity at Syracuse University. During his tenure as Dean, New York State designed the Centers of Advanced Technology (CAT) program and under Strait’s leadership the University received one of the 6 CATS. To make sure the center got off the ground, he left his Dean position and became the Founding Director of the Computer Applications and Software Engineering Center (CASE).

“He was instrumental in getting state funds to build the Center for Science and Technology (CST). Without his vision of CASE and his leadership, CST would not be built,” says Varshney. “CASE continues to flourish even today as a preeminent center that champions economic growth in the state of New York via its outstanding research activities with New York State.”

“When I became Dean of Engineering and Computer Science, I developed the concept for the Syracuse Center of Excellence following the approach that Brad had pioneered for the CASE Center,” says Bogucz.

Strait retired but always remained an active member of the Engineering and Computer Science family, serving as Dean Emeritus. He and Nancy also established the Bradley J. and Nancy B. Strait Scholarship to assist future generations of Syracuse University students.

He leaves behind a legacy of supporting and mentoring generations of young engineers and computer scientists. During a devoted life of service to Syracuse University, he provided guidance and encouragement at a crucial point in countless lives.

“I am forever blessed because he was part of my life. Those of us who are left must do our best to help the others who come after us like Brad did,” says Chin “Every time I am in the Dome during Commencement. I can still see Brad faithfully leading the procession as Mace Bearer guiding us to where we need to be.”

A memorial service at for Bradley Strait at Hendricks Chapel is planned for June 17th, 2021 at 5:00pm. A livestream of the event will be available.  

Biomedical Engineering Students Simulate COVID-19 Testing

Simulated COVID Testing in the Lab
As part of biomedical and chemical engineering Professor Dacheng Ren’s “Biological Principles for Bioengineers” class, students had the opportunity in their lab to simulate COVID-19 testing with a safe bacterial virus. “Essentially for this experiment we are replicating the PCR testing that is going on with the COVID Pandemic right now,” says bioengineering student Lily Rhuda. “We are working on viral detection so we are using polymer chain reaction and we are using a bacteriophage to mimic the coronavirus,” says bioengineering student Katie Southard. “So we are basically doing exactly what they are doing to test coronavirus samples.” “Each virus has RNA in it. So we are trying to see if that RNA is present,” says bioengineering student Assul Larancuent. “We are doing that by polymerase chain reaction. We are repeating that process again and again to see if that virus is present.” “We have run it through a spin column with a series of buffers to really isolate that material,” says Rhuda. “Then we use the centrifuge because that will bring all the buffer we don’t need out and leave the isolation we want.” “The repetition creates a process that makes it an accurate result,” says Larancuent. “You sort of see all the work that is behind COVID testing.” “It is really cool that we get the opportunity at Syracuse to do stuff like this,” said Southard. “It’s part of the reason why I choose this program at this school because I knew they would give me opportunities to do stuff like this with the latest technology.” “It has been a life changing class,” says Larancuent. “You got to see the real world connections between bioengineering and the actual situation we are having right now.” “This lab is a perfect opportunity to teach students advanced technologies related this ongoing pandemic,” said Ren. “Using a bacteriophage allows us to teach the principles and lab skills in a safe environment. I am proud that all groups successfully isolated RNA and conducted qPCR.”

Biomedical and Chemical Engineering Graduate Student Profile: Siwen Wang

Engineering and computer science grad student

Biomedical and chemical engineering graduate student Siwen Wang was a 2021 Outstanding Teaching Assistant Award recipient.

These awards are reserved for teaching assistants in good academic standing who have made truly distinguished contributions to teaching at Syracuse University.

  • Hometown: China
  • BMCE/ECS/other activities you have been involved with: Member of AICHE
  • Favorite thing about BMCE: All faculties are so nice in BMCE. And I really enjoy the research environment in my group.
  • Favorite thing about SU: I like SU campus so much. You can find beautiful scenes when walking around the campus, especially in spring and autumn.
  • Plan after graduation: I hope to keep doing research in my current field.

Biomedical and Chemical Engineering Graduate Student Profile: Bowei Liu

Bowei Liu

Biomedical and chemical engineering graduate student Bowei Liu was a 2021 Outstanding Teaching Assistant Award recipient.

These awards are reserved for teaching assistants in good academic standing who have made truly distinguished contributions to teaching at Syracuse University

Hometown: Bengbu, China

BMCE/ECS/other activities you have been involved with: research in Jesse Bond’s group, AICHE conference oral presentation.

Favorite thing about BMCE: Students, TAs, and professors get to know each other and have close relationships. You can ask for help from any facilities and staff, they are always willing to do the best for you. The collaboration will always be available between research groups if another has the resources you need.

Favorite thing about SU: The campus is at its optimized size: big enough to have a wide range of diversities and small enough to have a strong sense of community.

Plan after graduation: find a post-doctoral position and continue to be involved in scientific research.

Andra Lee Named Assistant Dean for Advancement and External Affairs

Andra Lee

Andra Lee has been hired as Assistant Dean for Advancement and External Affairs (AEA) at the College of Engineering and Computer Science (ECS).

“Andra is a dynamic addition to ECS leadership and our community of innovators. Her exceptional track record in senior development roles will enable her to make an immediate impact on key initiatives,” says J. Cole Smith, dean of ECS. “Her professionalism, diligence, and adaptability will be pivotal to the evolution of ECS and the student experience.”

Lee will be in a comprehensive and diverse role she believes has the necessary elements to generate support for ECS. “The position itself was intriguing from the start since it oversees a complete advancement model: marketing and communications, corporate, events, and frontline fundraising,” says Lee. “I believe all are important components of a successful development team and I am looking forward to helping in these areas in any way I can.”

Lee will be joining Syracuse University from the University of California, Berkeley where she serves as Senior Director of Development. Prior to that, Lee held senior development roles at the Whiting School of Engineering at Johns Hopkins University and at the University of Illinois.

“I enjoy working with engineers, and I think the interesting research ECS faculty are doing around environmental and societal issues will be really compelling to our alumni donor community,” says Lee. She adds, “I think Dean Smith has some great ideas for growing philanthropy for ECS and I am excited about working with him to achieve those goals.”

Lee is an accomplished, highly skilled, and collaborative leader who has helped raise millions of dollars to support academic programs. She has proven success stewarding major gifts, cultivating alumni from public and private universities, and experience implementing impactful new advancement initiatives. In her new role, Lee will be instrumental to the development and execution of ECS fundraising strategy and alumni engagement.

“Ultimately, we want Syracuse University students to have the best education and experience they can have at our institution and do what we can to help in that effort. I like to try new ideas and I hope I can always bring a fresh outlook and different ways of looking at a problem to the table,” says Lee.

Beyond a leader, Lee will be a mentor to her team, and she is particularly looking forward to working with the ECS staff and faculty.

“I look at my role in development as an educational one and I want to make sure the development team is a true partner with the faculty,” says Lee. “I would like to work with the faculty in finding new funding opportunities with their research or programs and earning their trust in us as their partners in fundraising. We all have our individual goals and aspirations, but in the end we all come together in our mission to make ECS one of the best engineering and computer science colleges in the country!”

Mechanical and Aerospace Engineering Research Team Receives $1.5 Million NSF Grant to Establish Research Center for Solid-State Electric Power Storage at Syracuse University

Aerial View of Syracuse University

Mechanical and aerospace engineering Professor Quinn Qiao and a research team from the College of Engineering and Computer Science received a $1.5 million award from the National Science Foundation (NSF) and industry members to develop an Industry/University Collaborative Research Center (IUCRC) for solid-state electric power storage with a site at Syracuse University. Syracuse University will partner with South Dakota School of Mines & Technologies and Northeastern University to build this NSF-sponsored center. The center will focus on developing eco-friendly, safe, and economically feasible all-solid-state energy storage technology for portable and medical applications, automotive industry, centralized and decentralized electric grids, military applications, and energy security.

Potential research projects will include materials design and testing with particular focus on interface engineering, solid electrolytes development, electrode materials synthesis, advanced mathematical modeling, and in-situ imaging to characterize performance, manufacturing process testing, battery system development, and fabrication of intrinsically combined solar/battery devices. In addition to the study of traditional materials, the center will also explore those relevant to earlier stage design and development of promising newer glass ceramic materials.

“Energy storage is critically needed to deploy renewable energies such as solar and wind, as well as development of electric vehicles. Energy storage allows clean energy to be available when sunlight is unavailable at night or cloud days, or when wind is not sufficient,” said Qiao. “Current lithium batteries typically use liquid electrolytes that may lead to safety issues from explosions or fires.  This NSF IUCRC will provide Syracuse University a great platform to work with industry partners, which offers numerous opportunities for our faculty and students. Industry members will also help to guide the research directions and projects that will lead to commercialization of solid-state batteries. This center will also help us to build the Cluster for Materials for Energy Applications.”

The center will work closely with industry partners in New York, across the United States and globally to develop high capacity, fast charging, safe and cost-effective solid-state batteries. The batteries developed by the center will be aligned with the energy storage set by the State of New York: 1,500 Megawatts (MW) of energy storage by 2025 and 3,000 Megawatts (MW) by 2030.

Qiao will be the principal investigator and site director for the NSF award. Mechanical and aerospace engineering professors Jeongmin Ahn, Bing Dong, Shalabh Maroo, Weiwei Zheng, Teng Zhang and Jianshun Zhang will be co-co-principal investigators or senior investigators.

“Mechanical and aerospace engineering faculty have a tradition of conducting a quality research in energy systems,” said mechanical and engineering department chair Young B. Moon. “With the establishment of this center, the faculty plans to elevate the research to the next level of international prominence working with other faculty members at Syracuse University.”

“We are very excited about this new IUCRC center,” said Associate Dean for Research and Graduate Programs Dacheng Ren. It extends our established strength in energy research and elevates it to a higher level. Besides research innovation, the center also brings industry insights and new training opportunities for our students.”

“This center positions Syracuse University on the leading edge of solid-state power storage. It is not only a fast growing field but an increasingly important one as we look to meet the need for safer, higher capacity batteries,” said College of Engineering and Computer Science Dean J. Cole Smith.

Wearable Dehydration Monitoring Device Takes First Place at Invent@SU 2021

Students in the Invent@SU Program

For the first few weeks of Invent@SU, physics major Paul Franco ’22, aerospace engineering student Zach Stahl ’23 and computer science student Anthony Mazzacane ’24 were not always sure their concept would work out. They had identified a clear problem – 80% of NCAA athletes had suffered from dehydration but finding a solution was not simple. They wanted to design a wearable device that could monitor an athlete’s hydration level so coaches and trainers would have better information and keep athletes safe – but would also need to prove their invention worked.

“We knew the scientific principle worked, but in the first few weeks we had logistical problems with the prototype,” said Franco.

As they pushed forward, they leveraged their different skill sets to solve problems with sensors, data collection and a prototype model.

“Being interdisciplinary forces you out of your comfort zone in a really good way,” said Mazzacane.

“Sweatration” was one of seven interdisciplinary teams of undergraduate inventors competing in the six week Invent@SU program. Before the first week of the program, faculty help form three-person interdisciplinary teams that balance different skill sets. Each team comes up with a concept for an original invention, research existing patents to make sure their idea is unique, develop a prototype and pitch it to weekly guest evaluators before “Shark Tank” style final judging at the end of week six.

The Sweatration team was concerned that initial evaluators were skeptical and knew they needed to back up their idea with hard data. They also met with a Syracuse University athletic trainer to gain their input.

“After every time we pitched, I wanted as much feedback as we could get,” said Franco.

The trainer was very supportive of the idea and didn’t believe there was anything like it that existed currently. As their pitch improved, the technical challenges were also being overcome. During a week five test of their prototype at the Barnes Center, the team saw it was collecting meaningful data – and their prototype could reliably show when the wearer was getting dehydrated.

“We had improved the prototype for a better fit and better connections for the technology inside,” said Stahl. “When I saw it was delivering data and consistently indicating dehydration I was thrilled.”

The notable alumni, entrepreneurs and innovators who served as final judges awarded the Sweatration first place and a $7500 prize. They plan on continuing with their invention and will work with both the Blackstone Launchpad in Bird Library and the Innovation Law Center as they move forward.

Second place at Invent@SU went to Ambiflux – a device that can both monitor asthma conditions and deliver medication.

“It felt good that we were rewarded for all the time and energy we put into this,” said bioengineering and neuroscience major Victoria Hathaway ’22. “It is an important device that is needed for a real cause.”

“To see that the judges saw what we saw – it was very gratifying,” said computer engineering student Aidan Mickleburgh ’23. Mickleburgh is also in the H. John Reilly Dual Engineering/ MBA program.

“It felt nice they appreciated the way all the concepts and elements came together,” said chemical engineering student Trinity Coates ’24.

The third place went to Sense-A, a monitoring and alert device that can help people caring for a family member with Alzheimer’s Disease.

“It was a great experience, different from anything else I have done in college,” said computer science student Hong Yang Chen ’22. “Building a physical prototype was a great challenge.”

“Good feedback from judges and evaluators was very helpful and they saw the difficulties caregivers currently face,” said chemical engineering student Simran Lakhani ’22.

“We are definitely going to move forward with this and work with Blackstone Launchpad,” said biomedical engineering student Gabriela Angel ’21 G’22.

Honorable mention at Invent@SU went to Glisten. They designed a device aimed at helping people monitor their dental health at home and provide pre-diagnostic information to a dentist.

“To be able to research, design and build a functioning prototype in six weeks is intense, but the expertise of the faculty and the evaluators made it possible,” said bioengineering student Bianca Andrada ’22.

“Our team was a good balance of different skills and perspectives,” said industrial and interaction design major Ahn Dao ’23.

“We have a passion to keep the world smiling,” said biology student Justin Monaco ’21 G’22.

Invent@SU was sponsored by Syracuse University Trustee Bill Allyn G’59 and Janet “Penny” Jones Allyn ’60, Dr. Deborah L. Pearce and William J. Sheeran ’60, G’63, G’66, Matthew Lyons ’86, Haden Land G’91 and Cathy Land, Ralph Folz ,90, Michael Lazar G’65 and Avi Nash G’77. For more information on the program, you can visit invent.syr.edu.

Steve Huang G’72, G’75 Establishes Memorial Scholarship in Honor of Syracuse University Mentor

Steve Huang

After rising to the position of vice president of engineering technology at International Flavors & Fragrances (IFF), one of the top priorities for Steve Huang G’72, G’75 was to build a culture that supported the needs of everyone in the company. Huang’s early career and experiences as a chemical engineering student at Syracuse University shaped a belief in the nexus between serving and a better society.

“You kind of change your life perspective,” said Huang. “I decided my focus will be trying to train and cultivate younger engineers and professionals in my company and creating the proper environment for them to grow and develop.”

Now as a management and technology consultant, Huang is scaling these core philosophies and finding new ways to serve gifted, young talent around the world. In honor of the man that once served him, Steve Huang has made a generous gift to establish the endowed Allen J. Barduhn Memorial Scholarship in Chemical Engineering.

“Professor Barduhn trained me and shaped me to become an engineer, but he also helped me on a personal basis,” said Huang. “I told him once, I look at you not just as my advisor, but almost like a parent. I respect him to such a degree.”

Barduhn had a profound influence, but it was the caring actions of foreign student advisor, Virginia Torelli that made Huang first feel welcome in Syracuse. Huang completed his undergraduate degree in Taiwan and a scholarship made it possible for him to pursue a graduate degree at Syracuse University. He arrived in the United States for the first time after five o’clock on the Friday before Labor Day weekend. To Huang’s surprise, Torelli waited to help him get settled.

“She stayed until everything was taken care of,” said Huang. “Even the service people at the dorm stayed to open the door and get me into my room. I could not believe that. My first impression was very warm, and it was a tremendous experience.”

Selflessness from others is at the center of Huang’s Syracuse University experience, most notably from Professor Barduhn.

“I was very, very fortunate. I had one of the best advisors I could ever have. Professor Barduhn really had patience and explained to us the purpose of research,” said Huang. “He really taught you how to work on problem solving. He wanted to train you, help you grow, and he wanted you to graduate.”

Barduhn also had experience in industry which enabled him to prepare his students with knowledge and insight unobtainable from a textbook. The benefits and positive experiences stemming from Huang’s decision to attend Syracuse University were considerable, but it was what Barduhn did next that may have carried the most weight.

“Professor Barduhn had such good advice. He is a tremendous person,” said Huang. “Not only did he teach me how to make good engineering judgments, but he also helped me get my green card.”

Having a green card sponsor was key because it made it easy for Huang to take job interviews, many international students are not so fortunate. Barduhn hired Huang to work in his lab and helped him gain permanent resident status.

“He told me, don’t worry, you have a Ph.D. degree, stay, work for me, and at the same time he said he would apply for a green card for me,” said Huang. “I was only his student, but he was willing to do that. So, I got my green card from Doctor Barduhn’s application. That is a favor I can never return. I will always remember him.”

Huang also credits his time at Syracuse University as a big step toward learning how to develop cross-cultural relationships and working with a variety of people-a skillset that would become invaluable as his professional career took off. Huang initially wanted to be a professor, but Barduhn urged him to first go work as an engineer. Young and fearless, Huang accepted a research and development position with IFF in 1976. He was the first chemical engineer with a doctoral degree hired by the company and Huang took up the challenge to pioneer his position.

In the 1980’s while Huang was developing and implementing advanced control systems at IFF’s United States and European manufacturing sites, he collaborated with colleagues in legal, finance, and marketing departments to lead a game-changing expansion into China for IFF. Through the 1990’s business in China thrived and Huang’s global manufacturing responsibilities increased substantially. In 2001 Huang advanced to the role of vice president of global chemical manufacturing and he continued to help IFF grow by applying solid business models, including sales and operations (S&OP), and Systems Applications and Product (SAP) implementation. By the time he retired after 35 years, IFF had seen sales increase by 600 percent and become an industry leader worldwide.

It is not a coincidence Huang understands the impact of generosity and the right environment over time. The opportunities afforded to him by others prompted one good thing leading to another throughout his education and career. Ultimately putting him in a position to serve. A position he says he may not be in without a chance to attend Syracuse University.

“Every one of those small things adds up. I am very appreciative for the scholarship that I had. I don’t think I would have been able to come to the United States without it,” said Huang. “With this gift I hope we can stimulate our alumni to really spend some effort and resources to help with education to build a better society. People are our foundation. I was really happy that I was able to do this.”

Spring 2021 Engineering and Computer Science Dean’s List

In recognition of superior scholarship, the following students have been entered on the Engineering & Computer Science Dean’s List for Spring 2021.

To be eligible for Dean’s List recognition, the minimum semester grade point average must be 3.40 or higher, must have earned a minimum of 12 graded credits and must have no missing or incomplete grades.

College of Engineering and Computer Science Spring 2021 Dean’s List

Aerospace Engineering 

Zar Nigar Ahmad

Juanitta Acheampomah Bekoe

Justin Douglas Blowers

Madeline Constance Brooks

Richard L Bruschi

Jakob Samuel Bryant

Nishkreenchan Chowdhury

Owen P Clyne

Nicholas Daniel Crane

Brian James Cronin

Ryan Demis

Aleksandar Dzodic

Kaleb Jonah Eddy

Hans-Christian Esser

Jacob Fastov

Kassidy Fields

Christian Scott Fitzgerald

Benjamin Daniel Gerard

Alexandre J Gill

Sareta Rose Gladson

Jacob D Gomez

Hali Morgan Goodwin

Zachary William Haas

Aidan Hoff

Sydney F Jud

Hunter John Adam Knarr

Trevor Anthony Knight

Zachary Andrew Kubala

Thomas Matthew Lane

Isaac Alan Lehigh

Xinyu Liu

Powers Craig Lynch

Noah Martel

Maxwell Joseph Martin

William Armstrong Martin

Phillip Anthony Mazany

Mariana C McManus

Gian Ettore Mecca

Alexander T Metcalf

Romeo Michelson

John P Michinko

Vincent Anthony Miczek

Kendra Teresa Miller

Paul Robert Mokotoff

Evan Gregory Moore

Brendan Pierce Murty

Mark Namatsaliuk

Jarod I Okamura

Daniel Oluwalana

Randall McGinnis Osborn

David Dang Pham

Madeline G Phelan

Logan D Prye

Nicholas Christopher Richard

Brandon Walker Riley

Kip Risch-Andrews

Emily Muriel Rivard

Tracey Josephine Rochette

Andrew Douglas Rockafellow

Gregory Joseph Ruef

William J Saueressig

Fred Evan Schaffer

Justine John A Serdoncillo

Vraj Shah

Prabha Singh

Gregory C Slodysko Jr

Amanda Marie Stafford

Zachary Michael Stahl

Christopher Stawarski

Ethan J Stocum

Marco Svolinsky

Maria Tarulli

Richard A Tedeschi

Anthony R Tricarico

Cody Joseph VanNostrand

Nicklas M Vinci

Mason Alexander Weber

John T Whitney

Aliza Marie Willsey

Cameron M Woodbury

Melissa Yeung

Bioengineering 

Samantha Abate

Jordyn Danielle Abrams

Bianca Louise Andrada

Gabriela Angel

Colin J Babick

Eric A Benaroch

Paige Bencivenga

Ailla Frances Bishop

Anna Mae Brunson

Zeynep Sue Cakmak

Britnie Jean Carpentier

Jade Ashlee Carter

Elizabeth Ann Clarke

Mya R Cohen

Lukas Cook

Shane A Corridore

Linzy M Dineen

Anthony Mark Dragone

Alejandro J Durand

Jillian P Durand

Bailey M Felix

Mia-Marie Fields

Akweshie A Fon-Ndikum

Gabriela Renee Gonzalez-Beauchamp

Skyla Gordon

Grace Haas

Lauren Elizabeth Hamilton

Victoria Li Rui Hathaway

Brenna Henderson

Avinash Jagroo

Madeline Jones

Simran Karamchandani

Gabriel Khan

Mohamed F Khan

Sara Anne Leonardo

Isabelle S Lewis

Trevor Daniel Amnott Liimatainen

Xinyan Lin

Alejandra Eugenia Lopez

Ethan L Masters

Aelish McGivney

Ian G McHugh

Caitlin R Mehl

Lindy M Melegari

Connor G Mulligan

Hannah V Murphy

Alexander Patrick Musselman

Jeffrey Ng

Jonathan Ngo

Mark Nicola

Nicole E Nielsen

Matthew Evan Orlando

Megan Isabel Perlman

Natalie Marie Petryk

Connor Preston

Beatrice Elizabeth Reilly

Lillian Kilmer Rhuda

Gavin David Richards

Rebecca A Schaefer

Brielle L Seidel

Alyssa Shelburne

Adam M Spadafora

Justin N Stock

Elizabeth Tarami Su

Bearett Ann Tarris

Kimberly Tlayaca

Zhuoqi Tong

Edgardo Velazquez

Carly J Ward

Royce Robert Weber-Pierson

Nathaniel D Wellington

Maximillian Meier Wilderman

Haven M Wittmann

Lauren Margaret Woodford

Rui Xie

Alina Zdebska

Julian Marcus Smucker Zorn

Samantha Zysk

Chemical Engineering

Daud Ansarovich Abdullayev

Paige O Adebo

Keerthivanan Annadorai

Adriana M Archilla

Athena Andrea Basdekis

Lilly Basgall

Sandy Ynhu Cao

Karley M Chambers

Trinity Joy Coates

Olushola Coker

Hao Dai

Dennis Dao

Samantha Esparza

David Anthony Fikhman

Edward Coleman Fluker

Priya S Ganesh

Brent Tadao Gosselin

Hannah Grossman

Avery Gunderson

Oduduabasi James Isaiah

Aiden A Jacobs

Stanley Jimenez

Jake Tyler Jock

Sayf Karim

Laxmi Khatiwada

Adam J Klinger

Simran Dharmendra Lakhani

Gabriel Lipsitz

Nicole Helene Llewellyn

Rawia F A M Marafi

Angela L Martinez

Oliver Mutu

Thomas A O’Brien Jr

Sean O’toole

Fabiana Nohelia Perez

Seth Reed

Ryan Gordon Ryersen

Ivan Yankov Sarbinov

Jacob Matthew Shellhamer

Dakota Alexander Story

Jason Tan

Spencer T Tardy

Megan Varcoe

Briana Nicole Vlacich

Elizabeth M Wall

Connor Andrew Wescott

Melita Zejnilovic

Civil Engineering 

Orges Agolli

Cassie Agren

Anna Rose Arcaro

Nicole Ayora-Gonzalez

Lucas Bellandi

John Blum

Luke S Bonenberger

Arielle Bramble

Matthew Emmet Brewster

Emma Jane Brown

Alycia Joline Bruce

Joli L Cacciatore

Brett M Carney

Trevor Caviness

David Coghiel

Alejandro E Correa

Aymeric P Destree

Thomas Driscoll

Brendan Dwyer

Bradley Charles Frederick

Maraea K Garcia

Stephen Goffredo

Elliane Reut Greenberg

Alyssa Jeannine Griffin

Bensen Gu

Shawn G Gulamerian

Zelin Guo

Matthew Paul Hauser

Qifan He

Catherine E Henn

Maxwell J Karl

Joshua Michael Kaufman

Alexander Gregory Klee

Christopher J Klein

Adam Paul Landry

Abigail G Laschalt

Haben Legesse

Daniel Leyva

Emma Marie Liptrap

Emilija Alise Lizins

Erick Lojano-Quispe

Lluvia Margarita Lopez Garces

John M Mazza

Jessica M McGowan

Amira A Mouline

Mazin F Moya

Marissa R Nicole

Erin E O’Brien

Kevin B Ordonez

Gabriel Jacques Prepetit

Svetislav Radovic

Alexander David Ruppe

Isabella Salgado

Cassie Elizabeth Saracino

Stephanie D Schein

Emma Hayes Schoonover

Juha Wesley Schraden

Ravyn Smith

Caitlin Jane Spillane

Adrian Stiefelmann

Alec Spencer Thompson

Anand Veeraswamy

Christian Viola

Nathan Viramontes

Abigail Meghan Wischerath

Isabelle Wong

Paige H Yamane

Computer Engineering

Chikeluba K Anierobi

Malkiel Asher

Mergim Azemi

Gavin M Beaudry

Kyle J Betten

Jackson Thomas Bradley

Jinzhi Cai

Dynasty Da’Nasia Chance

Yifei Che

Dana Marie Castillo Chea

Guoliang Chen

Hossain Delwar

Xavier Evans

Elizabeth A Fatade

Aidan Robert Harrington

Mehak Jetly

Virkin Jimenez

Benjamin N Johnson

Bikash Khatiwoda

Nicholas Gerard Lee Landry

Jessica K Lat

Matthew B Leight

Jiaxiong Li

Nicholas Kent Magari

Kyle David Maiorana

Isabel M Melo

Nicholas J Mohan

Benjamin Hudson Murray

Jose L Olivera

Jiannuo Pei

Jessica A Reslan

Alfonso E Rivas

Brian Rodriguez

Daniel Rose

Samuel M Rosenthal

Hongyi Ruan

Alexander Segarra

Ritwik Takkar

Shu Wang

Ryan Wolff

Hanyi Xu

Renjie Xu

Ziyun Zhang

Andy Zheng

Computer Science 

Aaron Alakkadan

Sajjad Abdullah Albadri

Kwaku Amofah-Boafo

Giovanna Elizabeth Barsalona

Brian H Belluscio

Dazhi Bi

Maxwell William Hans Bockmann

Joshua Jordan Boucher

Spencer H Bradkin

Bryan Bladimir Bueno Reyes

Bryce Cable

Christopher Manuel Calderon Suarez

Liam M Calnan

Megan J Campbell

Yuecheng Cao

Abby Chapman

Jackie Chen

Runzhou Chen

Siyu Chen

Yixing Chen

Yuhao Chen

Doung Lan Cheung

Season Chowdhury

Konstantinos Chrysoulas

Matthew Cufari

William Stuart Devitt

Ting Dong

Russell Carl Doucet

Nathan B Fenske

Evan Garvey

Grant Thomas Gifford

Brianna S Gillfillian

Brian J Giusti

Justin S Glou

Justin Gluska

Dayong Gu

Tighe Gugerty

Alexander Peter-Anthony Haas

Athanasios Hadjidimoulas

Erika R Hall

Andrew Hamann

Jillian Elizabeth Handrahan

Miranda Rose Heard

Wendy Hesser

Cameron Hoechst

Laurel Howell

Jacob Howlett

Natalie Huang

Xuanye Huang

Nathakorn Jitngamplang

Michael Wesley Jones

Jamed K Kamara

Jaehun Kim

Ekaterina Kladova

Gavin William Kline

Polina Kozyreva

Miksam Kurumbang

Rami L Kuttab

Eric C Lee

Andy Li

Jiaqi Li

Ruowen Li

Arvin Lin

Haochen Lin

Erxi Liu

Jiaming Liu

Jing Liu

Junzhang Liu

Steven Liu

Tiara I Logan

Vikas Gautam Lohana

Cayden Thomas Lombard

Yiheng Lu

Runzhi Ma

Hunter O’Neal Malley

Kanoa Matton

Ryan M May

Anthony Louis Mazzacane

Noah Mechnig-Giordano

Preston Mohr

Thomas J Montfort

Jacob Morrison

Jovanni Nicholas Mosca

Andi Muhaxheri

Paige C Mundie

Krutartha Nagesh

Zoe Anne Neale

Maduakolam Nicholas Onyewu

Maya Ostoin

Daniel Pae

William Anderson Palin

Xiaofeng Pan

Michael J Panighetti

Brian Joseph Pellegrino

Siwei Peng

Anthony Perna

Fiona Colleen Powers Beggs

Akshay Hari Prasad

Shane Michael Race

Lauryn Ashley Rivers

Eric Rodriguez

Sadikshya Sanjel

Jonathan Lee Schwenk

Benjamin William Smrtic

Louanges Essohana Marlene Takou-Ayaoh

Melissa Li Tang

Jonathan Richard Constantine Templeton

Jonathan Ezra Thomas

Kyra Danielle Thomas

Griffin E Timm

Courtney Patricia Tuozzo

Randy C Vargas

Bermalyn Maricel Vicente

Christopher Mark Vinciguerra

Puxuan Wang

Ruobing Wang

Xinyi Wang

Robert Ward

Daniel Weaver

Jonathan Williams

Ethan Wong

Yurui Xiang

Yujie Xu

Chen Yang

Jintao Yang

Jishuo Yang

Stella R Yaunches

Elin J Yaworski

Yian Yu

Yulun Zeng

Chengyuan Zhang

Liaotianbao Zhang

Rixiang Zhang

Weikun Zhang

Zhiyuan Zhang

Hang Zhao

Junjie Zheng

Liuyu Zhou

Xinqian Zhou

Raymond Zhu

Sida Zhu

Joseph Patrick Zoll

Engineering Undeclared

Olivia R Conlin

Michael J McElroy

Electrical Engineering

Minghao Ai

Rebecca Corrine Andino

Tianle Bu

Kevin E Buciak

Yushang Cai

Vincent Alec Camarena

Arianna Maxine Cameron

Yuang Cao

Brendan Robert Ciarlone

Eli Aiden Clark

Nicholas Shawn Connolly

Alex Lev Cramer

Trevonne Davis

Henry C Duisberg

Nicholas Fazzone

Justin P Geary

Matthew R Gelinas

Christopher Gill

Jose I Ginorio

Jack Orlando Guida

Emerson Iannone

Jemma Mallia

Liam Fuller Marcato

Tyler Sean Marston

Zixun Nian  Nian

Kylie Elizabeth Nikolaus

Dylan D Palmer

Julia Pepin

Matthew Piciocchi

Stephen Joseph Rogers

Gilberto E Ruiz

Gabriel E Ruoff

Kayla Ann Saladyga

Jenna Mei Stapleton

Jaime S Sued Jr

Jared William Welch

Ernest C Whitbeck

Abigail Wile

Chongfang-James Xu

Zheyuan Zhang

Environmental Engineering

Ana Cristina Baez Gotay

Luke M Borden

Benjamin R Cavarra

Bessie Chen

Evan James Cibelli

Cambre Rae Codington

Elizabeth Bryant Cultra

Cameron Nicole Edwards

Anna Feldman

Allyson Greenberg

Jessenia Paola Guzman

Brady E Hartnett

Christopher Graham Harvey

Anna M Holdosh

Erica G Jenson

Eva Rose Kamman

Abigail Rose King

Nicholas Colin Axel Kohl

Birch Lazo-Murphy

Audrey B Liebhaber

Samuel Robert Livingston

Carleigh Ann Lutz

Kevin A Lynch

Jiayu Ma

Nicole A Mark

Molly M Matheson

Steph Ricky Millan

Sydney Mitchell

Matthew Edward Nosalek

Scott M Potter

Yongfang Qi

Kaura Yanse Reyes

Jacob Thomas Sardino

Mary H Schieman

Noah Michael Sherman

Husna M Tunje

Jacob M Tyler

Maria Antonia Villegas Botero

Anna Wojcik

Savannah Marie Wujastyk

Yifan Zhong

Qiuyu Zhou

Reilly Zink

Mechanical Engineering

Owyn Phillip Adams

Arfeen Armaghan

Joshua Carl Arndt

Arda Arslan

Rachael O Beresford

Charles Shaw Bowman

Arnaud Buard

Ryan G Burns

Adrian L Caballero

Alexander Joseph Callo

Joseph Timothy Capra

Caleigh J Casey

Rishov Chatterjee

Samuel Joseph Corrigan

Cooper P Crone

David Matthew Denneen

Madeline Doyle

Andrew J Esposito

Cameron Barry Frechette

Elan Fullmer

Clinton Edward Farina Garrahan

Samuel Ryan Getman

Emily Ann Greaney

David M Griffin

Connor Hayes

Zhao Jin

Dong Myeong Kang

Jeremy C Kang

Macauley J Kastner

Daniel Jacob Kenney

Finnian James Kery

Teagan L Kilian

Cherry Kim

Jason T King

Savannah Mae Kreppein

Elizabeth Marcy Kretzing

Trevor D Kroells

Lily Larkin

Peter Le Porin

Honorata Lubecka

Bei Luo

Katherine Elizabeth Macbain

Lauren Mack

Ryan Patrek Martineau

Sarah Ann Michael

Georgios Michopoulos

Leilah Miller

Nicholas Mink

Wiley Robert Moslow

Allison Mullen

Beau M Norris

Aidan T O’Brien

Nicholas Joseph Papaleo

Corey A Phung

Pei Ren

Aidan Riederich

Jeremy Vinton Rosh

Jeffrey Ryu

Colin Santangelo

Nitish Sachin Satpute

Nathan Schnider

Shane M Sefransky

William Kaspar Sherfey

Zachary Ryan Shuler

Eric Silfies

Nathaniel Slabaugh

Owen Nicholas Smith

Ian Storrs

Austin James Sumner

Yiyuan Sun

Matthew K Swanson

Ethan William Tracey

Evan R Tulsky

Taj Asim Whitney

Michael Wong

Tszho Wong

Sean T Wuestman

Maxwell James Yonkers

Xiaoqing Yu

Antony Zheng

Systems & Information Science

Yiyang Dai

Jonathan Richard Deiss

Rodcliff Hall

Skyler Marie Hall

Luke Gregory Hedges

Stacy Kim

Niara A Phoenix

Nadia Olivia Shelburne

Zachary Tyler Williams

Electrical Engineering and Computer Science Professor Sucheta Soundarajan Receives NSF CAREER Award

Large networks like social media platforms, highway systems, and even our genes contain vast amounts of data hiding in plain sight. However, the techniques scientists design to learn about the nonlinear relationships within these structures often result in unintentional discrimination against historically disadvantaged groups. These biased outcomes are what electrical engineering and computer science professor Sucheta Soundarajan is working to prevent by bringing fairness to network algorithms.

Soundarajan has received a National Science Foundation (NSF) CAREER Award for her research on algorithms for network analysis. The grant is a single investigator award intended to support Soundarajan’s professional development. In addition to providing funding for research, it will support a number of non-research service projects.

“Anytime I get a grant it feels great because it is validation from the larger scientific community,” said Soundarajan. “This one especially because it is tied to me as an individual and not just the project. It feels like I am being validated as a scientist. It means a lot.”

Although the award is an individual accomplishment, it is supporting research that has potential to benefit communities around the world. Increasingly, information is becoming acquired from network analysis and what scientists are finding is that despite algorithms not having access to protected attributes like age, disability, gender identification, religion and national origin, they still end up discriminating against these groups.

“What we’re seeing is that people from these minority and disadvantaged groups are being wrongfully discriminated against at a higher rate,” said Soundarajan. “We want to create algorithms that automatically find people central within a network but do it in a way that is fair.”

Soundarajan says criminal sentencing and lending are two examples of areas where algorithms are used to make crucial decisions and where scientists have detected potential wrongful discrimination. Another example of a fairness issue is in the way we connect with each other on social platforms. Friendship recommendation algorithms can exacerbate a tendency for people to seek out those who are similar to themselves.

“Taken to an extreme, if people follow these recommendations, people end up in silos where they only connect to people who are like them and that is how you end up with echo chambers,” said Soundarajan.

Outside of her research, Soundarajan will have the opportunity to hire a graduate student to help develop ethics-based modules that can become part of computer science courses with the hope it will help students develop ethics focused thinking.

“We’re going to design these labs where we will give students a data set and they will apply some algorithms to it and then they will look at the results and they will have to think about are these results fair,” said Soundarajan.

Soundarajan will also be looking into developing continuing education for lawyers. She hopes to create classes that focus on explaining how algorithms can cause discriminatory issues.

Committing her time and talent to something societally meaningful is important to Soundarajan. She credits the support she has received throughout her life as a factor in choosing her research area, and she recognizes the help she has received from members of her department contributed to her latest achievement.

“There has been so much invested in me as a scientist, I feel like I have the moral obligation to do something that benefits everybody,” said Soundarajan. “I have been really fortunate to be surrounded by people who really want to see me succeed and that’s been true at Syracuse University as well. People have given me their time, spending hours reading the proposal that got me this award, and that means a lot to me.”

Engineering and Computer Science Students Attend 2021 ACM Tapia Conference

The Life Sciences Complex at night from above.

Seven students from the College of Engineering and Computer Science attended the 2021 ACM Tapia Conference with help from a STARS Ignite grant awarded to electrical engineering and computer science Professor Farzana Rahman. The ACM Tapia Conference is designed to promote diversity, connect undergraduate and graduate students, faculty, researchers, and professionals in computing from all backgrounds and ethnicities. Before attending the ACM Tapia conference, the student cohort participated in monthly webinar series facilitated by STARS Ignite leadership to mentor students so they can bring the best out of attending diversity conferences, develop value for diversity and inclusiveness in Computing, and contribute to institutional broadening participation activities.

The students had opportunities for workshops and presentations by nationally recognized labs, academic leaders and industry leading companies. A career fair at the conference gave students a chance to meet with recruiters.

“I could have individual meetings with recruiters of different companies in the conference. During meeting with researchers and engineers, I could become more familiar with the culture and projects of companies,” said graduate student Reyhaneh Abdolazimi. “Tapia was also a great opportunity to connect with diverse students from different backgrounds who are looking for job or doing research in the related areas.”

“The early career workshops were very helpful and I was able to connect with some of the presenters to ask about their area of specialization,” said Jemma Mallia ‘23 In many of the career workshops they had a very energetic presenting style that motivated me. Some of the most helpful information included how to optimize my resume, effectively network, seek opportunities, and create opportunities.

“At the Tapia Conference, you can choose the people to speak with. If you choose a recruiter, you may know more about the recruiting process. If you choose a developer, you may know more about the company culture and techniques,” said graduate student Xin Chen.

“I feel as though attending the ACM Tapia conference allowed me to see the diverse paths ahead of me in computing,” said Michael Perry ’22. “I plan to give a talk at our school’s hack-a-thon about broadening participation in computing to hopefully spread the awareness among my community.”

Electrical Engineering and Computer Science Professor Pramod Varshney and Students Working With Industry Leaders on Drone use Research

Pramod Varshney Portrait

Distinguished Professor Pramod Varshney’s Sensor Fusion Lab in the College of Engineering and Computer Science along with the Center for Advanced Systems and Engineering (CASE) at Syracuse University, is collaborating with the multinational Thales company to develop new tools and techniques for monitoring air space and tracking of small unmanned aircraft systems (UAS), commonly referred to as “drones”.

Drones, are becoming increasingly important in our daily lives in order to quickly and safely deliver essential goods and better serve populations. As the world faces new challenges, these types of capabilities provide alternative access with reduced physical touch points, which is particularly important in the context of COVID-19.  Varshney says this collaboration is critical to the advancement of drone integration into the national airspace system and integral to multiple, on-going integration projects including the U.S. Air Force Research Lab’s Collaborative Low-Altitude UAS Integration Effort (CLUE) and for the New York UAS Corridor—a project taking place in close proximity to Syracuse University to integrate drones into the airspace safely between Syracuse, NY, and the FAA’s UAS Test Site at the Griffiss International Airport located in Rome, NY.

Dr.Varshney’s lab is developing performance metrics and models for new radar systems being deployed ensuring that traditional aviators and drones do not get too close in the air, thereby creating a safety issue within the national airspace system.  Varshney and his students are working with Thales engineers and business leaders to implement algorithms that will more accurately track drones using multiple sensors (radar, acoustic, radio frequency and cameras) to provide real-time tracking ensuring safety in the air and on the ground.  Surveillance data fusion is a core competency at Syracuse University which led to the partnership between Thales and Varshney—a recognized, world-renowned expert in multi-sensor data fusion algorithmic development.

Thales, a global company with more than 80,000 employees developing and delivering solutions for aerospace, space, ground transportation, defense and digital identity and e-security,  has a long-standing commitment to university partnerships.

“While the company possesses world-class engineering and development professionals, business leaders within the company recognize the importance of academic partnerships to rapidly advance technologies and concepts, and develop the next generation workforce who will revolutionize business practices and technology advancement,” said Varshney.

As a large systems integrator, Thales helped define the standard for UAS airspace integration and traffic management models – specifically as an early partner with the FAA for Low Altitude Authorization and Notification Capability (LAANC). The company’s integration of third party capabilities, such as surveillance and other data services into a UTM platform, is enabling new digital services for UAS airspace access.  Varshney says Syracuse University plays a vital role in the integration of this safety-critical service.

“Central New York is leading the United States in the integration of drone technology.  Syracuse University and the school’s Autonomous Systems Policy Institute along with other organizations including CenterState CEO and NUAIR and Thales are committed to establishing a leadership role in the development of critical technologies, policies and new public-private business models to advance the United States’ national airspace system,” said Varshney.

SU Researchers Working on Tool to Determine Drug Risks During Pregnancy

Collecting accurate data showing whether or not any pharmaceutical drug could be harmful to unborn children is very difficult. Without clear embryotoxicity data, doctors often have to balance risks to the health of an expectant mother against the health of her baby and hope a drug does not have any negative side effects.

“There are tons of drugs on the market that have not been evaluated yet,” said biomedical and chemical engineering Professor Zhen Ma. “We want to think about how we can re-evaluate everything”

Ma and his Syracuse University research team developed an in vitro 3D tissue model of a human heart based on human induced pluripotent stem cells (hiPSC). A model existing outside the body makes it possible to test drugs often prescribed during pregnancy and learn how they influence hiPSC growth, cardiac differentiation, and early heart formation in a fetus.

“The goal of this project is to use stem cell technology as a tool for screening embryotoxicity for pharmaceutical compounds,” said Ma. “We will be using this to create a model so we can classify the potential risk of future drugs.”

The National Institutes of Health (NIH) sees pediatric pharmacology as an area of need. Ma, in collaboration with a Syracuse University Falk College of Public Health professor and a professor from SUNY Upstate received funding for five years through an NIH Research Grant Award (RO1) to use the cardiac organoid model to improve traditional pharmaceutical screening.

“This funding will take us to another level on these embryotoxicity studies.” Said Ma. “What we really propose for this finding is we can develop a risk classification system for the drugs.”

To begin achieving their goal, the team is running optimizations and exposing the cardiac organoid model to drugs with known embryotoxicity levels to calibrate drug response. By introducing data analytics technologies into their research, the team has begun establishing a new biostatistical model to classify risk and with the predictive model in place, Ma and his collaborators are evaluating the embryotoxic potentials of psychotropic drugs. The research could enable expectant mothers struggling with mental health issues to continue receiving treatment through pregnancy without added concern for what the impact is on the unborn child.

“With this model we built, we can tell which drugs will maybe control the syndrome and choose the one that is safer for fetal development,” said Ma.

Additional breakthroughs could come in the area of drug discovery. Ma foresees the potential to evaluate new drugs during pre-clinical trials and to build in safeguards against embryotoxicity.

“Using this data from the drugs we already know have an embryotoxicity issue or don’t have embryotoxicity issue, we can create a database and use that database to create a statistical model,” said Ma. “The idea is in the future if a pharmaceutical company develops a new drug, let’s say a new drug for COVID-19, we can put this drug in our model and feed it the data so we can classify how risky this drug could be in terms of embryotoxicity.”

An embryotoxicity risk classification system would be a pioneering breakthrough because it could allow for a more precise assessment drug effects on early embryonic development, leading to safer pregnancies. The model also has the potential to become a critical part of the standard for pharmaceutical development. It would provide developers with a human based system for testing to compliment research done with rodents.

“Our model can be run in parallel,” said Ma.

Dr. Young Moon Reappointed as Chair of the Mechanical and Aerospace Engineering Department

Dr. Young Moon has been reappointed as the chair of the mechanical and aerospace engineering (MAE) department in the College of Engineering and Computer Science through June 2025. Dr. Moon has served as MAE department chair since 2016.

“I’m grateful to have his leadership, guidance and experience as we move forward during these challenging times,” said Dean J. Cole Smith. “Dr. Moon is an internationally respected scholar and mentor who values all our students and their success. In the short time I’ve been here, I have seen first-hand how he selflessly dedicates his time and energy to Syracuse students.”

Moon is the William J. Smith Professor in Manufacturing Enterprises and teaches courses and conducts research in the areas of cyber-manufacturing systems, sustainable manufacturing, product realization processes and systems, enterprise resource planning (ERP) systems, systems modeling and simulation, computer integrated manufacturing (CIM), product lifecycle management (PLM) and engineering education. He has been instrumental in launching the new Engineering Management online master’s program and helped launch the incredibly successful Invent@SU program.

“I am very grateful for all the support and help that I have received from MAE faculty, staff, advisory board, and students over the years,” said Moon. “I would like to thank Dean Smith for his support and giving me the opportunity to continue advancing the mission of the department. I look forward to continuing working with all college and department colleagues and students during this uniquely challenging period and beyond.”

He has had extensive interactions with industry and has published over 100 refereed journal and conference publications. He is serving as an Engineering Accreditation Commissioner of ABET. He is active in a variety of capacities with numerous professional organizations, including INCOSE, SME, ASEE, IFIP, and IEEE.

Moon holds a bachelor of science degree in industrial engineering from Seoul National University, a master of science degree in industrial engineering and engineering management from Stanford University, and a Ph.D. degree in industrial engineering from Purdue University. He is a licensed Professional Engineer, Certified Fellow in Production and Inventory Management, and Certified Manufacturing Engineer. A Fulbright Scholar, Dr. Moon has held visiting positions in many different universities, including MIT, KAIST, University of Pennsylvania, Boğaziçi University, Universidad Carlos III de Madrid, Univerzitet u Sarajevu, and Universidade de São Paulo.

A Family Journey

Nafiseh Shahbazi Majd G’21 and Javad Shafiei Shiva G’21 knew they were making a decision that would change both of their lives but did not initially realize how special their eventual accomplishments would be. The married couple had been successfully working at highly regarded companies for six years after completing their master’s degrees at the University of Tehran and Sharif University of Technology, but both had the desire to earn Ph.D. degrees.

“We were eager to follow up on our studies and we thought we could create this opportunity for ourselves,” says Majd.

“An important point for us was if one of us will attend the Ph.D. program in a university, there should be a program for the other person in that university” said Shafiei Shiva. “If we are going to a university with environmental engineering for me, there should be a program with structural engineering which is her field.”

While exploring research universities, Shafiei Shiva had spoken to civil and environmental engineering Professor David Chandler at Syracuse University and the well-known hydrologist made an impression on him.

“I really liked Professor Chandler even before meeting him in person. The way he encouraged me and his focus on my strengths made me realize I am a good fit for his research group and can help with achieving the team’s research goals,” says Shafiei Shiva.

Chandler was interested in his research ideas and Central New York was already looking attractive to Shafiei Shiva and Majd.

“We love the snow and cold weather,” says Shafiei Shiva.

Syracuse University was also a draw for Majd. During her coursework for her Master’s degree, she became very familiar with civil and environmental engineering Professor Eric Lui.

“In our Structural Stability course at University of Tehran, Professor Lui’s book was our textbook,” says Majd. “When I saw Javad’s admission letter from SU, I got so excited and I knew right then I will be contacting him.”

The couple relocated to Syracuse and Shafiei Shiva started as a Ph.D. student with Chandler in the civil and environmental engineering department in 2014. As Majd explored her options for a Ph.D. program, Professor Lui, Emeritus Professor James Mandel, and Professor Dawit Negussey all offered their assistance. Majd started her Ph.D. the next year.

“Having all the support from the department and knowing what to expect from this program, I enrolled in the Civil Engineering Ph.D. program,” says Majd. “I was so thrilled when I learned I will be working with Dr. Lui who is a subject matter expert in his field. He had open-door policy and was approachable for help and advice. This was exactly the opportunity I was hoping for, a professional and intelligent advisor who is considerate and inspiring, while cultivating my potentials and putting his trust in my abilities. Both advisors were tremendously supportive and there was a trust component that was truly valuable to us.”

“Dr Shafiei Shiva is truly both a gentleman and a scholar,” says Chandler. “His comportment and generosity to students across the CEE Department was often understated, but always available.  As scholar, he chose the course of his dissertation carefully and once set, worked methodically to develop a set of insightful metrics in an exceptionally thorny and topical field.  I am proud of his work and hope that he can find a path home to academia here at Syracuse University.”

“It has been a pleasure to serve as Dr. Majd’s academic and dissertation advisor,” says Lui. “She not only possesses the intelligence and determination needed for Ph.D. study, her diligence, enthusiasm and passion have made this arduous journey very gratifying and rewarding.  As a teaching assistant, she is passionate, meticulous, and is much beloved by her students.  As a research assistant, she is astute, perspicacious, and keen on solving complex problems.  She and Dr. Shiva were wonderful students who have enriched our undergraduate and graduate programs.  They are now wonderful alumni who will make important and lasting contributions to the profession.”

While it is unusual to find a married couple both pursuing doctoral degrees in the same department at a prominent research university, they also appreciated having a partner who understood what it took.

“It helped that both of us were doing this together,” says Majd.

“We could completely understand each other. Getting a Ph.D. is hard so in our case we both understood why we had to stay late and work during weekends,” says Shafiei Shiva. “We would usually start our days at the same time walking to school and then some days we would have to stay until midnight. We would still have breakfast, lunch and dinner together and walk back home together.”

Majd and Shafiei Shiva found the close-knit civil and environmental department to be welcoming.

“Professor Chandler was a great advisor, friend and mentor for me. He was and still is a role model for me” says Shafiei Shiva. “We never felt like we were alone. One of the reasons that we love Syracuse University is that it was like a big family for us. On holidays like Thanksgiving we never felt we were alone.”

“You would feel supported. When we had an issue, everyone was approachable and wanted to know how they could help,” said Majd.

Being a couple also helped them connect to more people across the department and the College of Engineering and Computer Science.

“She was the TA for a course that my advisor was teaching and sometimes he would joke that we were having a family meeting,” says Shafiei Shiva.

When they learned their family would be growing, friends from the civil and environmental engineering department hosted two baby showers.

“Carolyn Mandel and Dr. Mandel offered to hold a baby shower for me, while another group of friends from the environmental group had asked Javad to surprise me with a baby shower! It was such an incredible and memorable moment in my life to see all my friends from Syracuse celebrating this new chapter of our life with us,” says Majd. “Also, Professor Chandler offered me another Fellowship through his NSF research grants to support me financially and he made sure I will be spending enough time with my newborn,” says Shafiei Shiva.

In 2020, Majd and Shafiei Shiva completed their Ph.D. degrees and are now working in California. Their life changing decision had worked out even better than they anticipated.

“Nafis and I are still working with our Ph.D. advisors on a few research works, and we appreciate the continued collaboration,” says Shafiei Shiva. “A Ph.D. program is not just about the academics and degrees. It’s also about learning communication skills and relationships, and taking care of others. There are some concepts that are hard to find in textbooks.”

They talk to their daughter about how much Syracuse University means to them and hope they can return.

“In my opinion it is the best place in the United States to live,” says Shafiei Shiva. “The lakes and the natural scenery, warm and welcoming people, and a community that look after one another – it’s hard to find anything like it in the United States.”

Chemical Engineering Student Profile: Ran Zhu G’21

Ran Zhu is the co-recipient of the 2021 Outstanding Graduate Student Award in Chemical Engineering.

Hometown: Zhengzhou, Henan, China

CEN/ECS/other activities you have been involved with: Seminars and meetings with future faculty.

Favorite thing about CEN: Best faculty and staff that I’ve ever met.

Favorite thing about SU: Wonderful summer and the amazing big lake effect. (I really enjoyed the snow season!)

Plan after graduation: Postdoctoral fellow at MIT, looking for a position in academia or research-related position in the chemical engineering industry in China.

Aerospace Engineering Senior Selected for National Ammon S. Andes Award

Aerospace engineering senior Daniel Oluwalana ‘21 has been selected as the 2021 Ammon S. Andes National Award Winner from the national aerospace engineering honor society, Sigma Gamma Tau. The award is highly competitive and designed to recognize the top undergraduate aerospace engineering student in the United States.

There are 54 current chapters of Sigma Gamma Tau across the country and each chapter nominates one student for the Ammon S. Andes Award each year.  The national award winner is chosen from the above 54 nominees based on GPA, rank in their graduating senior AE class, academic honors and distinctions, engineering and non-engineering extracurricular activities and length of service in each, technical achievements such as published works, projects and technical hobbies, with emphasis on engineering creativity used, and on an essay written by the candidate about “near-term and long-range career goals and how you hope to use your aerospace education.” The Syracuse chapter of Sigma Gamma Tau is advised by mechanical and aerospace engineering Professor Barry Davidson.

“I am very honored to be recognized in such a manner as an aerospace engineering major,” said Oluwalana. “I am extremely grateful for Dr. Davidson’s support as the Sigma Gamma Tau advisor and appreciate everyone else who supported me throughout the process.”

“Daniel displays the strength of character, the academic excellence, the research skills, and the compassion for others that are the hallmark of a great individual and a great scholar,” said Davidson. “It has been a pleasure for me to teach, mentor and interact with him over the past three years. I was so proud to have Daniel represent SU in this competition, and I’m so incredibly pleased that Sigma Gamma Tau recognized and honored him with this award.  It is certainly well-deserved.”

Oluwalana is the president of the Syracuse chapter of the National Society of Black Engineers, an Academic Excellence Workshop facilitator and has worked in two research labs in the College of Engineering and Computer Science as an undergraduate.

“Syracuse University exposed me to amazing research opportunities and instilled in me a balanced mindset. I have developed a deeper knowledge about my field and have become a better communicator by being a student here,” said Oluwalana.

While multiple Syracuse University students have won Sigma Gamma Tau’s Northeastern Regional Award in recent years, Oluwalana is the first Syracuse University student to receive the Ammon S. Andes National Award since the national honor society began recording winners on its website in 2001.

“Daniel is an incredible young engineer, leader and person. He is being honored for the ‘visible’ work that people notice, including his NSBE leadership, grades, and research. For each of those achievements, there is also the ‘invisible’ work where he supports his classmates, greets prospective students, and counsels other leaders about issues that are vital to our College,” said Engineering and Computer Science Dean J. Cole Smith. “I’m so excited for Daniel and for impact he will make in his next phase of life.”

Chemical Engineering Student Profile: Seth Reed ’21

Seth Reed ’21 is the recipient of the 2021 Engineering and Computer Science Alumni Association Service Award. This award recognizes outstanding service on behalf of the college community

  • Hometown: Rexford, NY
  • CEN/ECS/other activities you have been involved with: Researcher in Prof. Hosein’s lab, Engineering Ambassadors (current Program Coordinator), ECS Dean’s Advisory Panel, Men’s Club Volleyball Team (current Vice President), Orientation Leaders, Keys Player at Abundant Life Christian Center
  • Favorite thing about CEN: My favorite thing about CEN is the research experiences I had in the energy storage field within Dr. Hosein’s lab.
  • Favorite thing about SU: My favorite thing about Syracuse University is that I have been able to explore many opportunities outside of my academics. From being a setter on the club volleyball team to welcoming first-year students at the beginning of each semester, I grew as a person in varying aspects of my life during my last four years here.
  • Plan after graduation: I will pursue a Ph.D. in Materials Science & Engineering at the Texas Materials Institute at UT-Austin.

Nandhini Rajagopal G’21 Receives the 2021 Outstanding Graduate Student Award in Bioengineering

Nandhini Rajagopal is the recipient of the 2021 Outstanding Graduate Student Award in Bioengineering and received national recognition for a breakthrough molecular computational tool.

Hometown: Mumbai, India

BEN/ECS/other activities:

  • WiSE associate(2017-2019)
  • Contributed in training undergraduates in ECS scholar program in summer 2018
  • Student mentor for REU at Nangia lab in 2018.

Favorite thing about BEN: Highly encouraging, supportive and easy-to-approach BEN faculty and staff!

Favorite thing about SU: In my view SU is the perfect place for research, with calm surroundings and friendly people, that nurture creativity and encourage excellence in research.

Plan after graduation: After graduation I will start a postdoctoral fellowship at Boehringer Ingelheim pharmaceuticals for antibody research.

Electrical Engineering and Computer Engineering 2021 Senior Design Capstone Presentations

Electrical engineering and computer engineering seniors worked together as teams on their senior capstone design projects. Each team built a working physical prototype and demonstrated their design, key components and technology to their classmates and faculty. Since teams were not allowed to present their designs to the public due to COVID-19 precautions, here are videos of the 2021 team presentations.

Train Driven Wind Turbine (Emerson Iannone, Miguel Gomez, Nick Fazzone, Ketan Dubey)

Smart Cup Holder (Brendan Ciarlone, Alex Cramer, Nick Mohan, Ian Dickerson)

Ride Along Autonomous Vehicle (Trevonne Davis, Han Gyul Kwon, Mrinal Mathur, Matthew Storozum)

Smart Home (Chongfang Xu, Shu Wang, Yifei Che, Guoliang Chen)

Etch-A-Sketch Control (Vincent Camarena, Andrew Kelsey, John Garcia)

Solar Tracking Panel (Isaiah Plummer, Daniah Alzubaidi, Roberto Salazar, Ryan Kane)

Fall Detection Alert (Dana Marie Castillo Chea, Matthew Gelinas, Kylie Nikolaus, Malkiel Asher)

Homebrew Radar (Jinzhi Cai, Eli Clark, Jack Guida, Erik Olsen)

Programmable Delivery Bot (Justin Geary, Stephen Rogers, Nicholas Landry, Ritwik Takkar)

Automatic Pet Feeder (Xionfeng Zhu, Shengran Cheng, Yuang Cao, Antian Liu)

Bioengineering Student Profile: Bailey Felix ’21

Bailey Felix ’21 is the winner of the 2021 Oren Nagasako Award.  This award is given annually to a Bioengineering senior who demonstrates outstanding dedication and hard work acting as a mentor or preceptor to fellow students.

Hometown: Rochester, NY

BEN/ECS/other activities you have been involved with: Undergraduate research in the Henderson Lab, undergraduate design with Dr. Yung, peer leaders, SOURCE Student Research Mentor and Excelerators.

Favorite thing about BEN: Definitely the professors. They all genuinely care about student success and they have been the most incredible support system during my time here.

Favorite thing about SU: The culture at SU is amazing. Between the supportive academic environment and the passion for sports and school pride, I couldn’t imagine a better place to have spent the last 4 years.

Plan after graduation: I will be starting a Ph.D. program in Biomedical Engineering at the University of Maryland this fall.