Mechanical and Aerospace Engineering Senior Capstone Teams Present Designs to Industry Partners 

19 teams of engineering students presented their designs to industry partners at the end of the 2024 spring semester. These presentations were part of their senior capstone design course spanning the fall and spring semesters. Each team worked directly with their company sponsor to solve complex engineering problems.  The top three capstone teams won a monetary prize based on the judges’ scores and this year’s winners were Pursuit Aerospace (first place), Govsphere (second place), and Aerovec (third place).  

“I am so proud of all of my students who presented their senior design capstone projects to a panel of 14 industry expert judges,” says Kenneth and Mary Ann Shaw Professor of Practice in Entrepreneurial Leadership Alex Deyhim. “Each team presented the results of their year-long company-sponsored projects. They also gave poster presentations to our esteemed guests during the networking lunch. 

“We are grateful to our 19 faculty mentors who worked with the teams all year, and to our esteemed panel of judges who gave their time and expertise to provide invaluable feedback to the teams. We also want to thank Boeing Corp. for sponsoring the Boeing Award. All the teams gave amazing presentations and determining the winners required calculating the scores to three decimal places!”

The projects and companies that students worked with in the 2023-2024 academic year were: 

American Society of Heating, Refrigerating and Air-

Conditioning Engineers (ASHRAE)

Integrated Sustainable Building Design: Designed an HVAC System for a new library in São Paolo, Brazil.

Hydronic Shell 

Simulation of a Novel Heating & Cooling Concept: Identified the key components of the design for the Hydronic Shell, a modular HVAC system integrated into panels that form an insulated shell over an existing building.

Pursuit Aerospace

 CNC Machining Fixture – Clamp Redesign: Manufactured all components to be used within the CNC machine and enhanced the overall performance of the clamping mechanism.

Aerovec

Small-Scale Wind for Rooftop Applications: Assisted with the design of a small-scale wind turbine that could be installed on rooftops for commercial, industrial, and agricultural applications.

National Institute of Standards and Technology (NIST)

Neutron Velocity Selector Test Base and Cover: Designed a permanently mounted base with an attached protective cover to house all models of NVS during the testing phase and ensure the safety of all test participants in the event of a worst-case scenario.

American Society of Naval Engineers (ASNE)

 Promoting Electric Propulsion (PEP): Designed and built an aquatic vessel propelled by electrical propulsion.

New York State Department of Transportation (NYSDOT)  

Deformation of Elastomeric Bridge Bearings: Determined the maximum horizontal shear force bridge bearings could withstand before permanent deformation.

Microsoft

Bifacial Coldplates for High Power Servers: Developed a liquid-cooled server to provide efficient and adequate heat transfer from protected and stressed equipment.

Corning

Generative AI for Solving Real-World Problems:  Improved mechanical engineering design processes by eliminating the manual operation of 3D design software through means of generative AI.

Boeing

Sustainable Composite Materials for Aircraft Interiors: Investigated the feasibility of sustainable composite alternatives to address end-of-life and environmental issues without sacrificing durability or product quality.

Lockheed Martin

Additively Manufactured Cold Plate: Investigated, analyzed, procured, and tested AM cold plate designs that were representative of designs under consideration for use in high heat dissipating electronic module assemblies.

Lote Biologics

Utility Steam Generation Plant Design: Developed an appropriately sized new design, which met current and future facility demands in a highly efficient manner.

Thermal Space

Lightweight Graphene Radiators for Space System: Developed a baseline radiator panel design that could help to predict performance such as heat rejection capacity as well as temperature gradients.

SEPAC

Universal Torque Testing Machine: Developed and prototyped a torque and burnishing system for electromagnetic clutches and brakes for SEPAC.

Northrop Grumman

Generate an Empirical Database to Characterize Critical Oscillating Heat Pipe: Designed and tested physical OHP heatsinks to determine which design would allow for the highest heat flux in a system.

L3Harris

Universal Adjustable Antenna Mounting System: Created a sustainable, reliable, and user-friendly solution for temporary communications systems installation on helicopters.  

Govsphere

Modernization of MedX Rehab Medical Machines: Designed the next generation of the MedX Rehab Lumbar Extension and Cervical Extension machines, integrated electric motors, and redesigned the counterbalance, weight stack, and frame of each machine.

SAAB

Micro-Unmanned Underwater Vehicle STEM Design: Designed and constructed a cost-effective modular STEM kit variant of a military micro-unmanned undersea vehicle (UUV) at a reasonable cost for academic use.

Electrolux

AGV (Automated Guided Vehicles): Evaluated implementing Automated Guided Vehicles (AGVs) at the Kinston, North Carolina facility and facilitated efficient transportation of materials, including raw and assembled sumps, within the facility.