Humanitarian Work in Water Systems

From the drylands of Kenya to the rainforests of Suriname, civil and environmental engineering professor John Trimmer has dedicated his career to making a difference. After a service-learning trip to Nicaragua, where he helped with construction projects, Trimmer was inspired to pursue humanitarian engineering and improve the well-being of others. With a core research focus on water systems, sanitation, and resource recovery, he strives to promote sustainable living.   

As an undergraduate at Bucknell University, Trimmer was able to work with a few non-governmental organizations (NGOs). In addition to his trip to Nicaragua, he collaborated with a Peace Corps volunteer in Suriname, South America, stationed in a remote village and working on a rainwater collection system. After graduation, Trimmer continued working with the Peace Corps and spent three years in Uganda working with an NGO that specialized in constructing water tanks, latrines, classrooms, and other structures. 

After completing his Ph.D., which included working in Uganda on innovative approaches to sanitation systems, Trimmer joined the Aquaya Institute on their mission to improve global health through safe water and sanitation access. His work at the Aquaya Institute largely focused on research and he found himself based in Nairobi, Kenya, interacting with pastoral communities in dry regions of the country. 

Research team in Nairobi National Park
Trimmer and Aquaya Institute colleagues at Nairobi National Park in Kenya

“Though the communities were nomadic, it seemed like they were also looking to settle, and they were open to permanent infrastructure,” Trimmer says. “It was very qualitative. We focused primarily on asking questions regarding their current water systems and what they do for sanitation. We also did interviews and discussion groups to understand what these communities wanted and needed.” 

While working with the Aquaya Institute, Trimmer also researched the effectiveness of a program that aimed to provide more durable infrastructure to vulnerable households in northern Ghana. Since unstable soil is an issue that impacts certain areas, they wanted to ensure the structures they built would last.  

“If you dig a traditional pit latrine, it may collapse because the soil is unstable. Since the locals in the area didn’t have the means for a more durable structure, we were looking at different ways those systems could be supported financially,” Trimmer explained. “UNICEF funded the project so durable structures could be installed.” 

As Trimmer has traveled to different countries, he’s loved working with young researchers and found it rewarding to help them develop their skills and witness their growth. This passion for mentoring younger researchers would translate to his position as a Syracuse University professor, giving him a chance to continue guiding and supporting students.  

While teaching courses at the University, Trimmer plans to collaborate with NGOs he’s previously worked with on upcoming projects. He hopes to collaborate with colleagues to develop a platform that models sanitation systems to implement them as a teaching and research tool in the classroom. This will enable him to share the knowledge he’s gained from his humanitarian work and educate future researchers to do the same. 

Completed rainwater tank in southern Uganda 2014
A completed rainwater tank in Uganda

Reducing Plastic Pollution

Civil and Environmental Engineering Professor Svetoslava Todorova attended the second session of the United Nations (UN) Intergovernmental Negotiations Committee on Plastics during the summer of 2023 in Paris, France.

Todorova joined representatives from UN member states, regional economic integration organizations, UN agencies and intergovernmental agencies in an attempt to develop an international legally binding instrument on plastic pollution, including in the marine environment.  Unfortunately, the committee was unable to come to an agreement on a draft at the second session.

The next meeting of the committee will be held in November 2023 in Nairobi, Kenya. The committee has the goal of delivering a final agreement by the end of 2024.

“Overconsumption of plastics in a throw-away society generates a lot of waste. Much of it is not easily degradable and can persist in the environment. Single-use plastics visibly accumulate on the streets and in our waterways. I had hoped that the high visibility of problems connected to plastics pollution would make intergovernmental negotiations easier,” says Todorova. “Unfortunately, during the second session of the Intergovernmental Negotiations Committee, the delegates were locked in extensive discussions on basic principles and missed engaging in more substantive topics. This shows how difficult these negotiations will be and how challenging it will be to overcome divergent interests and opposition to progress in reducing plastics waste.”

Civil and Environmental Engineering Professor Charles Driscoll Selected for the 2023 Clarke Prize in Water Science

Professor Charles Driscoll in a river with two student researchers

Civil and Environmental Engineering Professor Charles Driscoll has been selected to receive the 2023 Athalie Richardson Irvine Clarke Prize for Outstanding Achievement in Water Science and Technology from the National Water Research Institute. Driscoll is the University and Distinguished Professor of Environmental Systems Engineering in College of Engineering and Computer Science. 

The Clarke Prize is considered one of the most prestigious awards pertaining to water science. It is awarded to thought leaders in water research, science, technology, or policy in the United States. Past honorees have included some of the most significant figures in civil and environmental engineering; the water, biological, physical, chemical, health, and political sciences; and public planning and policy.

Driscoll’s research largely involves characterization and quantifying the impacts of air pollution, such as acid rain and mercury, changing climate, and land and water disturbances on the structure and function of ecosystems, and pathways of ecosystem recovery. Much of his work has focused on forests and associated aquatic resources, including long-term studies at the Hubbard Brook Experimental Forest, NH and the Huntington Forest in the Adirondacks, NY. Recent work has included strategies for the decarbonization of sectors and achieving net zero greenhouse gas emissions.

Professor Charles Driscoll

Over the past 40 years, Driscoll has advanced new analytical techniques, established and maintained long-term measurements and experiments, and developed a series of research and predictive models that simulate transformations of major chemical elements in forest vegetation, soil and surface waters in response to air pollution, climate and land disturbance. Beyond theory, he is interested in testing ‘in situ’ strategies to reverse the damaging effects of acid rain and mercury contamination, eutrophication, urbanization, and climate change. Driscoll has testified at US Congressional and state legislative committee hearings, and provided briefings to government agencies, industry and stakeholder groups on environmental issues. He has served on local, national and international committees pertaining to environmental management and policy.   

Driscoll will receive the award and give a lecture in Irvine, California, on October 21, 2023. For information about attending the event, fill out the form on the Clarke Prize page.

Aaron Mohammed

Areas of Expertise:

Cold regions hydrology and hydrogeology

Permafrost thaw

Numerical modeling of hydrological processes

Coastal hydrogeology

Aaron Mohammed is an Assistant Professor in the Departments of Earth and Environmental Sciences and Civil and Environmental Engineering. His research focuses on the hydrology and hydrogeology of environments undergoing rapid changes due to climate warming and increased development. He is interested in the movement of water, energy, and chemicals through landscapes, and their interacting effects on hydrologic processes such as permafrost thaw, groundwater recharge, seawater intrusion, and contaminant transport. His research aims to improve our understanding of, and ability to predict, hydrological processes in a changing climate, and develop management strategies to enhance the resiliency of water and ecosystem resources.

Selected Publications:

Mohammed, A.A., Kurylyk, B.L., Cey, E.E., & Hayashi, M. (2018). Snowmelt infiltration and macropore flow in frozen soils: Overview, knowledge gaps, and a conceptual framework. Vadose Zone Journal, 17(1), 1-15.

Mohammed, A.A., Pavlovskii, I., Cey, E.E., & Hayashi, M. (2019). Effects of preferential flow on snowmelt partitioning and groundwater recharge in frozen soils. Hydrology and Earth System Sciences, 23(12), 5017-5031.

Mohammed, A.A., Bense, V.F., Kurylyk, B.L., Jamieson, R.C., Johnston, L.H., & Jackson, A.J. (2021). Modeling reactive solute transport in permafrost‐affected groundwater systems. Water Resources Research, 57(7), e2020WR028771.

Guimond, J.A., Mohammed, AA., Walvoord, M.A., Bense, V.F., & Kurylyk, B.L. (2021). Saltwater intrusion intensifies coastal permafrost thaw. Geophysical Research Letters, 48(19), e2021GL094776.

KarisAllen, J.J., Mohammed, A.A., Tamborski, J.J., Jamieson, R.C., Danielescu, S., & Kurylyk, B.L. (2022). Present and future thermal regimes of intertidal groundwater springs in a threatened coastal ecosystem. Hydrology and Earth System Sciences, 26(18), 4721-4740.

Mohammed, A. A., Guimond, J. A., Bense, V. F., Jamieson, R. C., McKenzie, J. M., & Kurylyk, B. L. (2022). Mobilization of subsurface carbon pools driven by permafrost thaw and reactivation of groundwater flow: a virtual experiment. Environmental Research Letters, 17(12), 124036.

Teng Zeng

Degrees:

  • Ph.D. Civil Engineering, University of Minnesota, 2012.
  • M.S. Environmental Science and Engineering, Singapore Stanford Partnership, 2007.
  • B.S. Environmental Science, Tongji University, 2006.

Areas of Expertise:

  • Occurrence and fate of organic micropollutants
  • Environmental photochemistry of organic matter 
  • Formation and control of water treatment byproducts 
  • Wastewater surveillance for substance use assessment

Our group combines collaborative field sampling, organic trace analysis, and data analytics tools to study chemical processes in natural and engineered aquatic systems. Our research primarily focuses on the occurrence and fate of organic micropollutants in surface waters and groundwater, the impacts of harmful algal blooms and lake browning on organic matter photochemistry, and the formation and control of byproducts during water treatment and reuse. Our team also develops analytical methods based on high-resolution mass spectrometry to support substance use assessment through wastewater surveillance in New York. 

Honors:

  • Expanding Chemistry in SETAC Award, Society of Environmental Toxicology & Chemistry (2023) 
  • NSF CAREER Award, National Science Foundation (2022) 
  • Mentor of the Year, Center for Fellowship & Scholarship Advising, Syracuse University (2022) 
  • Meredith Teaching Recognition Award, Syracuse University (2020) 
  • North America New Chemist Travel Award, Society of Environmental Toxicology & Chemistry (2017) 
  • Ralph E. Powe Junior Faculty Enhancement Award, Oak Ridge Associated Universities (2017) 
  • ExCEEd Teaching Fellowship, American Society of Civil Engineers (2016) 

Selected Publications:

  • Vogel, E. J.; Neyra, M.; Larsen, D. A.; Zeng, T., Target and nontarget screening to support capacity scaling for substance use assessment through a statewide wastewater surveillance network in New York. Environmental Science & Technology 2024, 58 (19), 8518-8530. 
  • Wasswa, J.; Perkins, M.; Matthews, D. A.; Zeng, T., Characterizing the impact of cyanobacterial blooms on the photoreactivity of surface waters from New York lakes: A combined statewide survey and laboratory investigation. Environmental Science & Technology 2024, 58 (18), 8020-8031. 
  • Pu, C.; Zeng, T., Comparative evaluation of chemical and photolytic denitrosation methods for chemiluminescence detection of total N-nitrosamines in wastewater samples. Environmental Science & Technology 2023, 57 (19), 7526-7536. 
  • Wang, S.; Basijokaite, R.; Murphy, B. L.; Kelleher, C. A.; Zeng, T., Combining passive sampling with suspect and nontarget screening to characterize organic micropollutants in streams draining mixed-use watersheds. Environmental Science & Technology 2022, 56 (23), 16726-16736. 
  • Wang, S.; Wasswa, J.; Feldman, A. C.; Kabenge, I.; Kiggundu, N.; Zeng, T., Suspect screening to support source identification and risk assessment of organic micropollutants in the aquatic environment of a Sub-Saharan African urban center. Water Research 2022, 220, 118706.  

Svetoslava Todorova

Degrees:

  • PhD, Civil Engineering, Syracuse University
  • MPA, Environmental Policy and Administration, Syracuse University
  • MS, Environmental Engineering, Syracuse University
  • BS/MS, Civil Engineering, University of Architecture, Civil Engineering and Geodesy, Bulgaria

Areas of Expertise:

  • Transport, cycling, and bioaccumulation of metals in aquatic environments
  • Sustainable engineering practices in built and natural environments
  • Urban stormwater management
  • Smart sensing for monitoring water and air quality
  • Science for policy formation and effective implementation

One aspect of my research encompasses field and analytical approaches to study the fate and transport of mercury in aquatic ecosystems and develop technologies for mitigating mercury contamination. I am also working on the development of low-cost sensors for the monitoring water and air quality. My prior engineering practice included design of urban water infrastructure, landfills, and assessment of contaminated sites. I was part of a team working on contaminant issues associated with the Deepwater Horizon incident in the Gulf of Mexico in 2010. I am involved in international policy making related to sound management of chemicals and wastes.

Honors and Awards:

  • Roster of Scientists (nominated and selected), UN Minamata Convention on Mercury, developing monitoring guidance for evaluation of the convention, 2022- current
  • Member Scientists (nominated and selected), UN Environment (UNEP), Ad hoc Working Group on Future Science-policy Panel under the Basel, Rotterdam, Stockholm and Minamata Conventions, 2022- current
  • Expert Member (nominated and selected), Working Group on Management of Contaminated Sites, UN Minamata Convention on Mercury, 2018-2019
  • Teaching Excellence Award, College of Engineering and Computer Science, Syracuse University, 2015
  • Member scientist, United Nations Environmental Program Mercury Partnership, 2011- current
  • New York State Water Environment Federation, N.G. Kaul Memorial Award for achievements in water quality, 2011

Selected Publications:

Yoshimura, K., Todorova, S., and Biddle, J. 2020. Mercury geochemistry and microbial diversity in meromictic Glacier Lake, Jamesville, NY. Environmental Microbiology Reports, 12(2): 195-202.

UN Environment, Chemicals Branch, Guidance Document on Management of Contaminated Sites, Geneva, Switzerland, July 2019, Report, contributing author

Todorov, D., Driscoll, C. T., Todorova, S., and Montesdeoca. 2018. Water quality function of an extensive vegetated and an impermeable, high-albedo roof. Science of the Total Environment 625: 928-939.

Martinez, G., McCord, S., Todorova, S., Driscoll, C.T., Wu, S., Araujo, J., Vega, C., and L. Fernandez. 2018. Mercury contamination in riverine sediments and fish associated with artisanal and small-scale gold mining in Madre de Dios, Peru. International Journal of Environmental Research and Public Health 15(8).

UN Environment, Chemicals Branch. Global Review of Mercury Monitoring Networks. Geneva, Switzerland, November 2016, Report, contributing author

Todorova, S., Driscoll, C.T., Matthews, D.A., and Effler, S.W. 2015. Zooplankton community changes confound the biodilution theory of methylmercury accumulation in a recovering mercury-contaminated lake. Environmental Science and Technology 49 (7): 4066-4071.

Todorova, S., Driscoll, C.T., Hines, M., Matthews, D. A., and S. W. Effler. 2009. Evidence for regulation on monomethyl mercury by nitrate in a seasonally-stratified, eutrophic lake, Environmental Science and Technology 43(17):6572-6578.

Chris E. Johnson

Degree(s):

  • Ph.D. (Geology), University of Pennsylvania, 1989
  • M.A. (Statistics), University of Pennsylvania, 1988
  • B.S.E. (Civil and Urban Engineering), University of Pennsylvania, 1983

Lab/Center Affiliation(s):

  • Center for Environmental Systems Engineering (CESE)

Areas of Expertise:

  • Soil chemistry
  • Biogeochemical processes in terrestrial ecosystems
  • Chemistry of natural organic matter
  • Trace metals in the environment

Professor Johnson is involved in a number of research projects in the broad area of environmental chemistry. He has ongoing research interests in the fate of trace metals (Pb, Zn, Cu, Ni) in forest soils and landscapes; the effects of clear-cut logging on soils and drainage waters; and the changing acid-base chemistry of soils historically affected by acid rain. His principal research sites are located in the Catskills and Adirondack regions of New York, as well as the White Mountains of New Hampshire.

Johnson is also actively involved in research on the chemistry of natural organic matter, which plays an important role in soil fertility, trace metal transport, and the acid-base status of soils and natural waters. He is particularly interested in the characterization of organic matter using advanced analytical tools such as nuclear magnetic resonance spectroscopy, liquid chromatography, and capillary electrophoresis. He is an Adjunct Professor at Griffith University in Brisbane, Australia, where he conducts research on soil chemistry in plantation forests in Southeastern Queensland.

Honors and Awards:

  • Phi Beta Kappa
  • Tau Beta Pi
  • Fulbright Scholar, Czech Republic, 1994
  • Excellence in Graduate Education, Faculty Excellence Award, 2012

Selected Publications:

Valipour, M., C.E. Johnson, J.J. Battles, J.T. Campbell, T. J. Fahey, H. Fakhraei, and C.T. Driscoll. 2021. Simulation of the effects of forest harvesting under changing climate to inform long-term sustainable forest management using a biogeochemical model. Science of the Total Environment. 767:144881.

Wieder, W.R., D. Pierson, S. Earl, and 27 others. 2021. SoDaH: the SOils DAta Harmonization database, an open-source synthesis of soil data from research networks, version 1.0. Earth System Science Data. 13:1843-1854.

Nieman, S.C. and C.E. Johnson. 2021. Net geochemical release of basic cations from 25 forested watersheds in the Catskills region of New York. Frontiers in Forests and Global Change. 4:667605.

Hamburg, S.P., M.A. Vadeboncoeur, C.E. Johnson, J. Atlee, and J. Sanderman. 2019. Losses of mineral soil carbon largely offset biomass accumulation 15 years after whole-tree harvest in a northern hardwood forest. Biogeochemistry. 144:1-14.

Gu, W., C.E. Johnson, C.T. Driscoll and S. Shao. 2017. Aluminum is more tightly bound in soil after wollastonite treatment to a forest watershed. Forest Ecology and Management. 397:57-66.

Clymans, W., D.J. Conley, J.J. Battles, P.J. Frings, M.M. Koppers, G.E. Likens, and C.E. Johnson. 2016. Silica uptake and release in live and decaying biomass in a northern hardwood forest. Ecology. 97:3044-3057.

Leys, B., G.E. Likens, C.E. Johnson, J.M. Craine, B. Lacroix, and K.K. McLauchlan. 2016. Natural and anthropogenic drivers of calcium depletion in a northern forest during the last millennium. Proceedings of the National Academy of Sciences. 113:6934-6938.

Shao, S., C.T. Driscoll, C.E. Johnson, T.J. Fahey, J.J. Battles, and J.D. Blum. 2016. Long-term responses in soil solution and streamwater chemistry at Hubbard Brook after experimental addition of wollastonite. Environmental Chemistry. 13:528-540.

Li, W. and C.E. Johnson. 2016. Relationships among pH, aluminum solubility and aluminum complexation with organic matter in acid forest soils of the northeastern United States. Geoderma. 271:234-242.

Gianfagna, C.C., C.E. Johnson, and D.G. Chandler. 2015. Watershed area ratio accurately predicts daily streamflow in nested catchments in the Catskills, New York. Journal of Hydrology: Regional Studies 4:583-594.

Balaria, A., C.E. Johnson, P.M. Groffman, and M.C. Fisk. 2015. Effects of calcium treatment on the composition of forest floor organic matter in a northern hardwood stand. Biogeochemistry. 122:313-326.

Johnson, C.E., T.G. Siccama, E.G. Denny, M.M. Koppers, and D.J. Vogt. 2014. In situ decomposition of northern hardwood boles: Decay rates and nutrient dynamics in wood and bark. Canadian Journal of Forest Research 44:1515-1524.

Johnson, C.E., C.T. Driscoll, J.D. Blum, T.J. Fahey, and J.J. Battles. 2014. Soil chemical dynamics after calcium silicate addition to a northern hardwood forest. Soil Science Society of America Journal. 78:1458-1468.

Dib, A.E., C.E. Johnson, C.T. Driscoll, T.J. Fahey, and K. Hayhoe. 2014. Simulating effects of changing climate and CO2 emissions on soil carbon pools at the Hubbard Brook Experimental Forest. Global Change Biology. 20:1645-1656.

Johnson, C.E. 2013. Chemical properties of upland forest soils in the Catskills region. Annals of the New York Academy of Sciences. 1298:30-42.

Johnson, C.E., T.J. Blumfield, S. Boyd, and Z. Xu. 2013. A 13C NMR study of decomposing logging residues in an Australian hoop pine plantation. Journal of Soils and Sediments. 13:854-862.

Charles T. Driscoll

Degrees:

  • Ph.D., Environmental Engineering, Cornell University, 1980.
  • M.S., Environmental Engineering, Cornell University, 1976.
  • B.S. (with distinction), Civil Engineering, University of Maine 1974.

Lab/Center Affiliation:

  • Center for Environmental Systems Engineering

Areas of expertise

  • Biogeochemistry
  • Climate change science and engineering
  • Environmental quality modeling
  • Ecosystem restoration
  • Limnology

Current Research:

My scholarly work addresses the effects of disturbance on forest, urban, freshwater and marine ecosystems, including air pollution (acid, nitrogen and mercury deposition), land-use, and climate change. Current research focuses on recovery of eastern forest watersheds from acidic deposition; health and environmental justice co-benefits of decarbonization of the electricity sector; ecosystem restoration; ecosystem response to changing climate; mitigation of harmful algal blooms; and atmospheric deposition, watershed and surface water transport and transformations, and biotic exposure of mercury. The Driscoll laboratory has published more than 530 articles in peer-reviewed journals. According to Google Scholar, these works have been cited over 55,000 times, with an h-index of 117. I have been designated as a highly cited researcher by Clarivate Analytics. I am a member of the National Academy of Engineering, a fellow of the American Association for the Advancement of Science, and Clarke Prize Laureate.

Courses Taught:

  • Aquatic Chemistry
  • Climate Change: Law, Science, Perception and Policy
  • Field methods in Environmental Science and Engineering
  • Fundamentals of Engineering Review

I teach undergraduate and graduate-level classes in environmental engineering, sustainable civil and environmental systems, aquatic chemistry and biogeochemistry.  Graduate students, undergraduate students and even some high school students who work in my laboratory. These students have a keen interest in research. They are encouraged to interpret their results in the context of environmental problems and issues, to interact with the research community beyond Syracuse University, present the findings of their research at professional meetings and publish in peer-reviewed journals.

Honors:

  • Critical Review author, Air & Waste Management Association, 2024
  • Clarke Prize Laureate, 2023
  • Syracuse University Chancellor’s Lifetime Achievement Award, 2020.
  • Lead author, United Nations Environmental Programme, Intergovernmental Panel on Biodiversity and Ecosystem Services report on Land Degradation and Restoration Assessment, 2016-2018.
  • Fellow, American Association for the Advancement of Science 2018.
  • Batsheva de Rothschild Fellowship, Israel Academy of Sciences and Humanities, Lectureship at Israel University, 2015
  • Member, National Research Council, Board of Environmental Studies and Toxicology, 2011-2017
  • Member, National Committee for Soil Science, The National Academies, 2008-2010
  • Member, National Academy of Engineering, 2007

Selected Publications:

Driscoll, C. T., J. B. Milford, D. K. Henze and M. D. Bell. In press. Atmospheric reduced nitrogen: sources, transformations, effects, and management. Journal of Air & Waste Management Association. doi: 10.1080/10962247.2024.2342765.

Marchese, M. J., J. R Gerson, A. J. Berky, C. T. Driscoll, L. E. Fernandez, H. Hsu-Kim, K. N. Lansdale, E. Letourneau, M. R. Montesdeoca, W. K. Pan, E. Robie, C. Vega and E. S Bernhardt. 2024. Human health risks of mercury exposure in gold mining regions of Peru depend on diet choices. Environmental Health Perspectives. doi: 10.1088/2752-5309/ad3d79.

Adams, E., J. E. Gulka, Y. Yang, M. E. Burton, D. A. Burns, V. Buxton, L. Cleckner, C. Desorbo, C. T. Driscoll, D. C. Evers, N. Fisher, O. Lane, H. Mao, K. R. Murray, G. Millard, R. Razavi, W. Richter, A. Sauer and N. Schoch. 2023. Distribution and trends of mercury in aquatic and terrestrial biota of New York, USA: a synthesis of 50 years of research and monitoring. Ecotoxicology, 32:959-976. doi: 10.1007/s10646-023-02704-0.

Brannon, M., A. C. A. Scholz, C. T. Driscoll. 2023. Shallow sediments as a phosphorus reservoir in an oligotrophic lake: Linkages to harmful algal blooms. Journal of Geophysical Research-Biogeosciences, 128:e2022JG007029. doi:10.1029/2022JG007029.

Caron, S., S. M. Garvey, J. Gewirtzman, K. Schultz, J. M. Bhatnagar, C. T. Driscoll, L. Hutyra, P. H. Templer. 2023. Urbanization and fragmentation have opposite effects on soil nitrogen availability in temperate forest ecosystems. Global Change Biology, 29:2156-2171. doi:10.1111/gcb.16611.

Contosta, A., J. Battles, J. L. Campbell, C. T. Driscoll, S. Garlick, R. T. Holmes, G. Likens, N. Rodenhouse, S. Rogers, P. Templer, M. Vadeboncoeur and P. Groffman. 2023. Early warning signals of change suggest declining resilience in the biology and biogeochemistry of a northern hardwood forest. Environmental Research Letters, 19(9):094052. doi: 10.1088/1748-9326/acf3fe.

E. B., S. Zhang, C. T. Driscoll and T. Wen. 2023. Human and natural impacts on the U.S. freshwater salinization and alkalinization: A machine learning perspective. Science of the Total Environment, 889:164138. doi:10.1016/j.scitotenv.2023.164138.

Gilliam, F., D. A. Burns, S. Watmough, S. Frey and C. T. Driscoll. 2023. Chapter 12 in Atmospheric nitrogen deposition to global forests spatial variation, impacts, and management implications. E. Du and W. Vries (Ed.). Academic Press, ISBN: 9780323911405.

Green, M. B, L. H. Pardo, J. L. Campbell, E. Rosi, E. S. Bernhardt, C. T. Driscoll, T. J. Fahey, N. LoRusso, J. Matthes, P. H. Templer. 2023. Combination of factors rather than single disturbance drives perturbation of the nitrogen cycle in a temperate forest. Biogeochemistry. doi:10.1007/s10533-023-01105-z

Marinos, R. E., P. M. Groffman, C. T. Driscoll, E. S. Bernhardt.2023. Accelerated soil nitrogen cycling in response to a whole ecosystem acid rain mitigation experiment. Soil Biology and Biochemistry. doi:10.2139/ssrn.4579996.

McDonnell, T. C., J. Phelan, A. F. Talhelm, B. J. Cosby, C. T. Driscoll, T. J. Sullivan and T. Greaver. 2023. Protection of terrestrial ecosystems in the Eastern United States from elevated atmospheric deposition of sulfur and nitrogen: A comparison of steady-state and dynamic model results. Environmental Pollution, 318:120887. doi:10.1016/j.envpol.2022.120887.

Miller, H. R., C. T. Driscoll and E.-L. S. Hinckley. 2024. Mercury cycling in the U.S. Rocky Mountains: a review of past research and future priorities. Biogeochemistry. 167(1):1-20. doi:10.1007/s10533-023-01108-w.

Ontman, R., P. Groffman, C. T. Driscoll and Z. Cheng. 2023. Surprising relationships between soil pH and microbial biomass and activity in a northern hardwood forest. Biogeochemistry, 163:265-277. doi:10.1007/s10533-023-01031-0.

Rindy, J. E., E. A. Pierce, J. Geddes, S. M. Garvey, J. Gewirtzman, C. T. Driscoll, L. R. Hutyra, P. H. Templer. 2023. Effects of urbanization and forest fragmentation on atmospheric nitrogen inputs and ambient nitrogen oxide and ozone concentrations in mixed temperate forests. Journal of Geophysical Research – Biogeosciences. doi:10.1029/2023JG007543.

Cliff I. Davidson

Degree(s):

  • Ph.D., Environmental Engineering Science, California Institute of Technology, 1977. 
  • M.S., Environmental Engineering Science, California Institute of Technology, 1973. 
  • B.S., Electrical Engineering, Carnegie Mellon University, 1972.

Lab/Center Affiliation(s):

  • Center of Excellence in Environmental and Energy Systems
  • Director, Center for Sustainable Engineering

Areas of Expertise:

  • Environmental transport and fate of air pollutants, especially lead and other toxic metals as well as sulfate and other inorganic acids 
  • Measurement and modeling of atmospheric dry and wet deposition of pollutants 
  • Human perceptions of energy use from day-to-day activities 
  • Assessment of performance of green infrastructure for stormwater management 
  • Protection of cities from extreme weather events due to climate change 

Current Research:

Davidson is currently studying the performance of green infrastructure for stormwater management in Syracuse, focusing on the Convention Center Green Roof. At 0.56 hectares, this is one of the largest green roofs in New York State and also one of the best-instrumented green roofs in the country. Data are collected on temperatures at various depths in the roof structure, flow of drainage water during rainstorms, water storage in the soil, and several weather parameters. Leaf area index and other plant characteristics are measured for the six species of sedum growing on the roof. The data are used to adapt and validate computer models of water flow, storage, and evaporation from the roof. In other research, Davidson is studying how public and private organizations in the U.S. and Latin America decide on strategies to protect their city from the extreme events of climate change. The events include coastal flooding, droughts, extreme heat, and pluvial flooding at inland locations. The preferences for different strategies are examined through surveys. 

Courses Taught:

  • CEE 562 Air Resources I
  • ECS 650 Managing Sustainability: Purpose, Principles, and Practices
  • CEE 463/663 Introduction to Sustainable Engineering
  • Professional development workshops for faculty around the country on developing sustainability content for engineering courses

Honors and Awards:

  • 2024 Best Case Study Award for the paper “A diagnostic analysis of low-impact development simulations with SWMM”, by Lucie L. Worthen, Christa Kelleher, and Cliff I. Davidson, Journal of Sustainable Water in the Built Environment, Volume 8, Issue 2, May 2022 https://doi.org/10.1061/JSWBAY.0000976 
  • AEESP Distinguished Lecturer for 2022-2023, Association of Environmental Engineering and Science Professors 
  • Faculty Fellow, Syracuse Center of Excellence in Environmental and Energy Systems, Syracuse University, elected 2016. 
  • Fellow, American Society of Civil Engineers, elected 2016 
  • Fellow, Association of Environmental Engineering and Science Professors, elected 2015 
  • United Methodist University Scholar-Teacher Award, Syracuse University 2014 
  • William H. and Frances M. Ryan Award for Meritorious Teaching, Carnegie Mellon University, 2009 
  • 2009 Outstanding Paper Award, Literati Network Awards for Excellence, Emerald Group Publishing, for the paper “Transforming universities for sustainability: Seven case studies from around the world,” by D. Ferrer-Balas, J. Adachi, S. Banas, C.I. Davidson, A. Hoshikoshi, A. Mishra, Y. Motodoa, M. Onga, and M. Ostwald, International Journal of Sustainability in Higher Education, Vol. 9, pages 295-316, 2008 
  • Fellow, American Association for Aerosol Research, elected 2008
  • Phillip Dowd Fellowship, College of Engineering, CMU, 2007 
  • Outstanding Educator Award, Association of Environmental Engineering and Science Professors, 2007 
  • Charles Beyer Distinguished Lecturer, Civil and Environmental Engineering, University of Houston, 2006 

Select Publications:

Squier-Babcock, Mallory and Cliff I. Davidson, Hydrologic performance of an extensive green roof in Syracuse, NY, Water, Vol. 12, Number 6, May 28, 2020, https://doi.org/10.3390/w12061535

Yang, Yige, Cliff I. Davidson, and Jianshun Zhang, Evaluation of thermal performance of green roofs via field measurements and hygrothermal simulations, Energy and Buildings, Vol. 237, Number 1:110800, April 15, 2021, https://doi.org/10.1016/j.enbuild.2021.110800

Yang, Yige and Cliff I. Davidson, Green roof aging effect on physical properties and hydrologic performance, Journal of Sustainable Water in the Built Environment, Volume 7, Issue 3, August 2021. https://ascelibrary.org/doi/abs/10.1061/JSWBAY.0000949?af=R

Worthen, Lucie L., Christa Kelleher, and Cliff I. Davidson, A diagnostic analysis of low impact development simulations with SWMM, Journal of Sustainable Water in the Built Environment, Volume 8, Issue 2, May 2022. https://doi.org/10.1061/JSWBAY.0000976

Johnson, Alexander J. and Cliff I. Davidson, Estimating dry deposition of atmospheric aerosols to urban surfaces by rain washoff, Atmospheric Environment, Vol. 293, January 15, 2023, https://doi.org/10.1016/j.atmosenv.2022.119466.  

Johnson, Alexander J., Cliff I. Davidson, Evan Cibelli, and Anna Wojcik, Estimating Leaf Area Index and Coverage of Dominant Vegetation on an Extensive Green Roof in Syracuse, NY, Nature-Based Solutions, Vol. 3, December 2023, https://doi.org/10.1016/j.nbsj.2023.100068

Elizabeth Carter

Degrees:

  • Ph.D. Environmental Engineering, Cornell University
  • MSc. Environmental Information Systems, Cornell University
  • B.S. magna cum laude, University of Massachusetts, Amherst

Research Interests:

  • Disaster response and mitigation
  • Hydrometerology and hydroclimatology
  • Detection of water from space
  • Space/time statistics
  • Machine learning/artificial intelligence
  • High-performance computing
  • Algorithmic bias in water resources management and engineering ethics

Honors:

  • NASA-USGS postdoctoral fellow
  • USDA-AFRI predoctoral fellow
  • Cornell University Graduate Dean’s scholar (2013-2019)

Current research:

Dr. Carter’s research in applied computational hydroclimatology attempts to fuse tools from modern data science with risk assessment in water resources engineering to mitigate social, environmental, and economic impacts of hydroclimatic extremes. Our success in utilizing our water resources infrastructure to reduce damages associated with the variable hydroclimate depends on our ability to diagnose and predict this hydroclimate variability at timescales which are relevant for adaptive management. This task is hampered by spatial and temporal sparsity of observations of hydrologic and hydroclimatic flux, complex patterns of space/time covariability in observations, and extremely low signal-to-noise ratio in hydroclimatic systems at the local scale. My research seeks to combat these obstacles by 1) integrating new sources of observational data, mostly from space-based assets, into diagnostic/predictive frameworks of hydrologic/hydroclimatic flux; 2) grounding data-driven analysis in a physical understanding of the hydrologic system through feature engineering and model diagnostics; 3) developing and utilizing data science algorithms which are appropriate for multivariate space/time systems, and 4) quantifying bias, error, and uncertainty in space/time models. Applications include automatic flood detection from multispectral and synthetic aperture radar (SAR) imagery for disaster response (NASA/USGS/NGA), developing custom hydrometeorological forecasts for adaptive reservoir management, detecting drivers of hydroclimatic variability of the Great Lakes, and quantification of evapotranspiration and groundwater flux from space (NASA/USDA).

Recent publications:

Carter, E., Herrera, D. A., & Steinschneider, S. (2021). Feature engineering for subseasonal-to-seasonal warm-season precipitation forecasts in the Midwestern US: towards a unifying hypothesis of anomalous warm-season hydroclimatic circulation. Journal of Climate, 1-67.

Sleeter, R., Carter, E., Jones, J.W., Eggleston, J., Kroeker, S., Ganuza , J., Dobbs, K., Coltin, B., McMichael, S., Shastry, A., Longhenry, R., Ellis, B., Jiang, Z., Phillips, J., and Furlong, P. M. (2021). Satellite-Derived Training Data for Automated Flood Detection in the Continental U.S.: U.S. Geological Survey data release, https://doi.org/10.5066/P9C7HYRV.

Tonitto, Christina; Woodbury, Peter; Carter, Elizabeth. (2020). Predicting greenhouse gas benefits of improved nitrogen management in North American maize. Journal of Environmental Quality 49 (4), 882-895.

Knighton, James; Pleiss , Geoff; Steinschneider, Scott; Carter, Elizabeth; Lyon,Steven; Walter, M. Todd. (2019). Reproduction of regional precipitation and discharge extremes with meso-scale climate products via machine learning: an evaluation for the Eastern CONUS. Journal of Hydrometeorology.

Carter, Elizabeth; Melkonian, Jeffrey; Steinschneider, Scott; Riha, Susan. (2018). Yield response to climate, management, and genotype: a large-scale observational analysis to identify climate-adaptive crop management practices in high-input maize systems. Environmental Research Letters, 13-11.

Carter, Elizabeth; Steinschneider, Scott. (2018). Hydroclimatological Drivers of Extreme Floods on Lake Ontario. Water Resources Research. 54: 4461-4478.

Carter, Elizabeth; Hain, Christopher; Anderson, Martha; Steinschneider, Scott. (2018). A water balance based, spatiotemporal evaluation of terrestrial evapotranspiration products across the contiguous United States. Journal of Hydrometeorology. 19: 891-905.

Carter, Elizabeth; Melkonian, Jeffrey; Steinschneider, Scott; Riha, Susan. (2018). Spatial gradients in management impact analysis of crop yield response to climate at large spatial scales. Agricultural and Forest Meteorology. 256: 242-252.

Carter, Elizabeth; Melkonian, Jeff; Riha, Susan; Shaw, Stephen. (2016). Separating heat stress from moisture stress: analyzing yield response to high temperature in irrigated maize. Environmental Research Letters. 11-9.