Charles T. Driscoll

University Professor of Environmental Systems and Distinguished Professor

Civil and Environmental Engineering

151 Link Hall

ctdrisco@syr.edu

315.443.3434

Degrees:

  • B.S. (with distinction), Civil Engineering, University of Maine 1974
  • M.S., Environmental Engineering, Cornell University, 1976
  • Ph.D., Environmental Engineering, Cornell University, 1980

Lab/Center Affiliation:

  • Center for Environmental Systems Engineering

Research Interests:

  • Aquatic chemistry
  • Biogeochemistry
  • Climate change science and engineering
  • Environmental quality modeling
  • Ecosystem restoration
  • Ecosystem science
  • Stormwater management
  • Hydrology
  • Limnology
  • Soil chemistry

Current Research:

My research largely involves characterization and quantifying the impacts of air pollution, such as “acid rain,” mercury, elevated concentrations of carbon dioxide and associated effects of changing climate and land and water disturbances on the structure and function of ecosystems. Much of my work has focused on forest and associated aquatic resources, including studies at the Hubbard Brook Experimental Forest, NH and the Huntington Forest in the Adirondacks, NY. I also examine effects on wetlands, the Great Lakes, urban ecosystems, coastal waters and the open ocean. Over the past 35 years, I have advanced new analytical techniques, established and maintained long-term measurements and experiments, and developed a series of research and predictive models that simulate transformations of major chemical elements in forest vegetation, soil and surface waters in response to air pollution, climate and land disturbance. Beyond theory, I am interested in testing ‘in situ’ strategies to reverse the damaging effects of acid rain and mercury contamination and eutrophication. Current research includes using models, field experiments and measurements to examine: ecosystem effects of changing climate and acidic, nitrogen and mercury deposition; the effectiveness of “green” water infrastructure in stormwater management; and ecosystem restoration. Recently we have been quantifying health and ecosystem co-benefits associated with a national carbon standard for power plant emissions.

To advance the “broader impacts” of research, I try to serve society through participation in various national and international committees and panels; advising federal and state agencies; working with natural resource managers and policy makers; briefing Congress and state officials; serving as an associate editor for the journal, Biogeochemistry; and informing the media and the public on the results of research. I am particularly interested in multidisciplinary activities, and synthesis and translation of scientific and engineering research. These activities inform my research. Finally, I am interested in improving and advancing science communication. I want science and engineering information to be accessible to the public and policy-makers to help guide cost-effective decisions on natural resource management.

Courses Taught:

  • Aquatic Chemistry
  • Biogeochemistry
  • Field methods in Environmental Science and Engineering
  • Fundamentals of Engineering Review

I teach undergraduate and graduate-level classes in environmental engineering, sustainable civil and environmental systems, aquatic chemistry and biogeochemistry. I have graduate students, undergraduate students and even some high school students who work in my laboratory. These students have a keen interest in research. They are encouraged to interpret their results in the context of environmental problems and issues, to interact with the research community beyond Syracuse University, present the findings of their research at professional meetings and publish in peer-reviewed journals. We have a new graduate training program called EMPOWER (Education Model Program on Water Energy Research, funded by the National Science Foundation) that will advance research on the energy-water nexus and provide training opportunities beyond science and engineering in science communication, public policy and research program management.

Honors:

  • Syracuse University Chancellor’s Lifetime Achievement Award, 2020.
  • Lead author, United Nations Environmental Programme, Intergovernmental Panel on Biodiversity and Ecosystem Services report on Land Degradation and Restoration Assessment, 2016-2018.
  • Fellow, American Association for the Advancement of Science 2018.
  • New Horizons, Lecture Clarkson University 2016
  • Batsheva de Rothschild Fellowship, Israel Academy of Sciences and Humanities, Lectureship at Israel University, 2015
  • Adirondack Research Consortium, Adirondack Achievement Award, 2012
  • National Research Council, Board of Environmental Studies and Toxicology, 2011-2017
  • S. National Committee for Soil Science, The National Academies, 2008-2010

Selected Publications:

Battles, J. J., T. J. Fahey, C. T. Driscoll, J. D. Blum, and C. E. Johnson. 2014. Restoring soil calcium reverses forest decline. Environmental Science & Technology Letters 1:15-19.

Blackwell, B. D., and C. T. Driscoll. 2015. Deposition of mercury in forests along a montane elevation gradient. Environmental Science & Technology 49:5363-5370.

Driscoll, C. T., K. F. Lambert, D. Burtraw, J. J. Buonocore, S. B. Reid, and H. Fakhraei. 2015 online. US power plant carbon standards and clean air and health co-benefits. Nature Climate Change 5:535-540.

Driscoll, C. T., R. P. Mason, H. M. Chan, D. J. Jacob, and N. Pirrone. 2013. Mercury as a global pollutant: Sources, pathways, and effects. Environmental Science & Technology 47:4967-4983.

Fakhraei, H., and C. T. Driscoll. 2015. Proton and aluminum binding properties of organic acids in surface waters of the Northeastern, USA. Environmental Science & Technology 49:2939-2947.

Fakhraei, H., C. T. Driscoll, P. Selvendiran, J. V. DePinto, J. Bloomfield, S. Quinn, and C. Rowell. 2014. Development of a total maximum daily load (TMDL) for acid-impaired lakes in the Adirondack region of New York. Atmospheric Environment 95:277-287.

Todorova, S., C. T. Driscoll, D. A. Matthews, and S. W. Effler. 2015. Zooplankton community changes confound the biodilution theory of methylmercury accumulation in a recovering mercury-contaminated lake. Environmental Science & Technology 49:4066-4071.

Zhou, J., Z. Wang, X. Zhang and C. T.  Driscoll. 2021. Measurement of the vertical distribution of gaseous elemental mercury concentrations in soil pore air at subtropical and temperate forests. Environmental Science & Technology, 55(3):2132–2142. doi:10.1021/acs.est.0c05204

McDonnell, T. C., C. T. Driscoll, T. J. Sullivan, D. A. Burns, B. P. Baldigo, S.  Shao. 2021. Regional Target Loads of Atmospheric Nitrogen and Sulfur Deposition for the Protection of Stream and Watershed Soil Resources of the Adirondack Mountains, USA. Environmental Pollution, 281:117110. doi: 10.1016/j.envpol.2021.117110.

Zhou, J., Z. Wang, X. Zhang, C. T. Driscoll and C-J. Lin. 2020. Soil-atmosphere exchange flux of total gaseous mercury (TGM) in subtropical and temperate forest catchments. Atmospheric Chemistry and Physics, 20:16117–16133. doi:10.5194/acp-2020-816.

von Schneidemesser, E., C. T.  Driscoll, H.  E. Rieder and L. D. Schifer. 2020. How will air quality effects on human health, crops, and ecosystems change in the future? Philosophical Transactions A, 378: 20190330. doi:10.1098/rsta/378/2183.

Wasswa, J., C. T. Driscoll and T. Zeng. 2020. Photochemical characterization of surface waters from lakes in the Adirondack Region of New York. Environmental Science & Technology, 54(17):10654-10667. doi:10.1021/acs.est.0c02811.

Evers, D. C., A. K. Sauer, D. A Burns, N. S. Fisher, D. Bertok, E. M. Adams, M. E. Burton and C. T Driscoll. 2020. A synthesis of patterns of environmental mercury inputs, exposure and effects in New York State. Ecotoxicology, 29(10):1565-1589. doi:10.1007/s10646-020-02291-4

Olson, C. I., H. Fakhraei and C. T. Driscoll. 2020. Mercury emissions, atmospheric concentrations, and wet deposition across the conterminous United States: Changes over 20 years of monitoring. Environmental Science & Technology Letters. 7(6):376-381 doi:10.1021/acs.estlett.0c00185.

Hinckley, E. S., J. T. Crawford, H. Fakhraei, C. T. Driscoll. 2020. A shift in sulfur-cycle manipulation from atmospheric emissions to agricultural additions. Nature Geoscience. doi: 10.1038/s41561-020-0620-3.

Shao, S., C. T. Driscoll, T. Sullivan, D. A. Burns, B. Baldigo, G. Lawrence and T. McDonnell. 2020. The response of stream ecosystems in the Adirondack region of New York to historical and future changes in atmospheric deposition of sulfur and nitrogen. Science of Total Environment. 716:137113 doi:10.1016/j.scitotenv.2020.137113

Todorova, S., C. T. Driscoll, D. A. Matthews, and S. W. Effler. 2015. Zooplankton community changes confound the biodilution theory of methylmercury accumulation in a recovering mercury-contaminated lake. Environmental Science & Technology 49:4066-4071.