Pun To (Douglas) Yung

Dr. Yung has long been intrigued by the interfacing of microbes with engineering tools on a micro- and nano-scale. He is unravelling methods to rapidly assess the viability of superbugs and harness energy from extremophiles using a combination of electrochemical, optical techniques and MEMS devices.

Degree(s):

  • B.S. in Electrical Engineering (Biomedical Engineering concentration), University of California, Los Angeles, 2003
  • B.S. in Mathematics/Applied Science (Medical and Life Sciences plan), University of California, Los Angeles, 2003
  • Ph.D. in Bioengineering, California Institute of Technology, 2008

Teaching Interests:

Dr. Yung is an advocate of a hybrid teaching and learning environment replete with project-based hands-on work, experiential activities and peer collaboration, a style departing from traditional top-down expository pedagogies.

Honors:

  • NASA Postdoctoral Fellowship, 2008
  • Vice-Chancellor’s Exemplary Teaching Award, Chinese University of Hong Kong, 2012
  • Dean’s Exemplary Teaching Award, Faculty of Engineering, Chinese University of Hong Kong, 2011, 2012
  • Outstanding Teaching Award, Department of Electronic Engineering, Chinese University of Hong Kong, 2010, 2011, 2012, 2013

Recent Publications:

  • Liu, Si Li, Wen Jie Wu, and Pun To Yung. “Effect of sonic stimulation on Bacillus endospore germination.” FEMS microbiology letters 363.1 (2016): fnv217.
  • Wu, Wen Jie, Si Li Liu, and Pun To Yung. “Realization of Conductometry on a Digital Microfluidic Platform for Real-Time Monitoring of Bacillus Atrophaeus Endospore Germination.” IEEE Sensors Journal 16.8 (2016): 2244-2250.
  • Tao, Wenyan, Yanqing Ai, Sili Liu, Cheuk Wing Lun, and Pun To Yung. “Determination of Alpha-Fetoprotein by a Microfluidic Miniature Quartz Crystal Microbalance.” Analytical Letters 48.6 (2015): 907-920.

Sucheta Soundarajan

Degree:

  • PhD, Computer Science (2013, Cornell University)

Research Interests:

  • Data mining
  • Social network analysis
  • Community detection
  • Applications to social and life sciences

Current Research:

Dr. Soundarajan’s research focuses on the structure of social and other real-world networks. She is interested in a variety of problems related to social network analysis, including community detection, link prediction, and network similarity. She is currently studying how communities change over time and, in particular, the structural factors that influence a community’s evolution. She is also interested in developing methods to obtain accurate samples of large network.

Courses Taught:

  • CIS 675 (Design and Analysis of Algorithms): Fall 2015

Selected Publications:

Sucheta Soundarajan and John Hopcroft. Use of Local Group Information to Identify Communities in Networks. ACM Transactions on Knowledge Discovery from Data (TKDD). 2015.

Sucheta Soundarajan, Tina Eliassi-Rad, and Brian Gallagher. A Guide to Selecting a Network Similarity Method. SIAM Conference on Data Mining (SDM). 2014.

Bruno Abrahao, Sucheta Soundarajan, John Hopcroft, and Robert Kleinberg. A Separability Framework for Analyzing Community Structure. ACM Transactions on Knowledge Discovery from Data (TKDD-CASIN). 2014.

Bruno Abrahao, Sucheta Soundarajan, John Hopcroft, and Robert Kleinberg. On the Separability of Structural Classes of Communities. 18th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD). 2012.

Sucheta Soundarajan and John Hopcroft. Using Community Information to Improve the Precision of Link Prediction Methods. World Wide Web (WWW) 2012.

Dacheng Ren

Degrees:

  • B.E. (major) Applied Chemistry, Shanghai Jiao Tong University, P. R. China, 1996.
  • B.E. (minor) Electrical Engineering, Shanghai Jiao Tong University, P. R. China, 1996.
  • M.E. Chemical Engineering, Tianjin University, P. R. China, 1999.
  • Ph.D. Chemical Engineering, University of Connecticut, Storrs, CT, 2003
  • Postdoctoral associate, Chemical Engineering, Cornell University, Ithaca, NY, 2003-2005.

Lab/Center Affiliation:

  • Syracuse Biomaterials Institute

Current Research:

We have broad interests in Biotechnology, especially bacterial control. Historically, our understanding of bacterial physiology and development of antibiotics have been focused on planktonic (free-swimming) cells. However, the vast majority of bacteria in nature exist in surface-attached highly hydrated structures comprising of a polysaccharide matrix secreted by the bound bacterial cells, collectively known as biofilms. With up to 1000 times higher tolerance to antibiotics and disinfectants compared to their planktonic counterparts, deleterious biofilms cause serious problems such as chronic infections in humans as well as persistent corrosion and equipment failure in industry. Biofilms are blamed for billions of dollars of losses and more than 45,000 deaths annually in the U.S. alone. Despite the well-recognized significance of biofilms, the biofilm research is still in its infancy. With the efficacy of antibiotics and disinfectants being intrinsically limiting, new approaches especially those with synergistic effects are desired.

Compared to the deleterious biofilms, which cause serious problems in both medical and engineering environments, biofilms of environmentally friendly bacteria have promising applications. Due to their intrinsic tolerance to toxic agents, such biofilms may provide promising solutions to currently unmet challenges such as the high cost in biofuel production due to the low tolerance of microbes to fermentation products and difficulties in bioremediation of toxic contaminants.

In the Biofilm Engineering Laboratory, we have broad interests in biofilm research including genetic basis of multidrug resistance, biofilm control by engineering smart surfaces and biomaterials, development of novel biofilm and persister inhibitors, as well as biofilm engineering for biofuel production.

Courses Taught:

  • CEN551 Biochemical Engineering
  • BEN301 Biological Principles for Engineers

Honors:

  • Syracuse University LCS Faculty Excellence Award, 2014.
  • NSF CAREER Award 2011-2016.
  • College Technology Educator of the Year, Technology Alliance of Central New York (TACNY), 2010.
  • Early Career Translational Research Award in Biomedical Engineering from the Wallace H. Coulter Foundation, 2009.

Selected Publications:

For a full list of publications, please see http://scholar.google.com/citations?user=85Ty0hAAAAAJ&hl=en&oi=ao.

Fangchao Song, Hyun Koo, and Dacheng Ren. “Effects of material properties on bacterial adhesion and biofilm formation” (Invited Critical Review). Journal of Dental Research. 94: 1027-1034 (2015).

Fangchao Song and Dacheng Ren, “Stiffness of cross-linked poly(dimethylsiloxane) affects bacterial adhesion and antibiotic susceptibility of attached cells”. Langmuir. 30: 10354-10362 (2014).

Huan Gu and Dacheng Ren, “Material and surface engineering to control bacterial adhesion and biofilm formation: a review of recent advances”. Frontiers of Chemical Science & Engineering (Invited Review). 8: 20-33 (2014).

Jiachuan Pan and Dacheng Ren. “Structural effects on persister control by brominated furanones”. Bioorganic & Medicinal Chemistry Letters. 23: 6559-6562 (2013).

Jiachuan Pan, Xin Xie, Wang Tian, Ali Adem Bahar, Nan Lin, Fangchao Song, Jing An and Dacheng Ren. “(Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one sensitizes Escherichia coli persister cells to antibiotics”. Applied Microbiology and Biotechnology. 97: 9145-9154 (2013).

Huan Gu, Shuyu Hou, Chanokpon Yongyat, Suzanne De Tore and Dacheng Ren. “Patterned biofilm formation reveals a mechanism for structural heterogeneity in bacterial biofilms”. Langmuir. 29: 11145-11153 (2013).

Jiachuan Pan, Fangchao Song, and Dacheng Ren. “Controlling persister cells of Pseudomonas aeruginosa PDO300 by (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one”. Bioorganic & Medicinal Chemistry Letters. 23:4648-4651 (2013).

Jiachuan Pan, Ali Adem Bahar, Haseeba Syed, and Dacheng Ren. “Reverting antibiotic tolerance of Pseudomonas aeruginosa PAO1 persister cells by (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one”. PLoS ONE. 2012, 7(9): e45778. doi:10.1371/journal.pone.0045778.

Tagbo H. R. Niepa, Jeremy L. Gilbert and Dacheng Ren. “Controlling Pseudomonas aeruginosa persister cells by weak electrochemical currents and synergistic effects with tobramycin”. Biomaterials. 2012, 33: 7356–7365.

Robert Szkotak, Tagbo H R Niepa, Nikhil Jawrani, Jeremy L Gilbert, Marcus B Jones and Dacheng Ren. “Differential Gene Expression to Investigate the Effects of Low-level Electrochemical Currents on Bacillus subtilis”. AMB Express. 2011, 1:39.

Xi Chen, Mi Zhang, Chunhui Zhou, Neville R. Kallenbach and Dacheng Ren, “Control of bacterial persister cells by Trp/Arg antimicrobial peptides”. Applied and Environmental Microbiology. 2011, 77(14): 4878-4885.

Shuyu Hou, Huan Gu, Cassandra Smith and Dacheng Ren, “Microtopographic patterns affect Escherichia coli biofilm formation on polydimethylsiloxane surfaces”. Langmuir. 2011, 27(6): 2686-2691.

Shuyu Hou, Zhigang Liu, Anne Young, Sheron Mark, Neville Kallenbach and Dacheng Ren, “Structural effects on inhibition of planktonic growth and biofilm formation of Escherichia coli by Trp/Arg containing antimicrobial peptides.” Applied and Environmental Microbiology. 2010,76(6): 1967-1974.

Jiachuan Pan and Dacheng Ren, “Quorum sensing inhibitors: a patent overview”. Expert Opinion On Therapeutic Patents (Invited Review). 2009, 19(11):1581-1601.

Miao Duo, Mi Zhang, Yan-Yeung Luk and Dacheng Ren, “Inhibition of Candida albicans Growth by Brominated Furanones”. Applied Microbiology and Biotechnology. 2009, 84(6):1551-1563.

Shuyu Hou, Erik A. Button, Ricky Lei Wu, Yan-Yeung Luk and Dacheng Ren, “Prolonged Control of Patterned Biofilm Formation by Bio-inert Surface Chemistry”. Chemical Communication. 2009: 1207-1209.

Qinru Qiu

Degree(s):

  • PhD

Lab/Center Affiliation(s):

  • AMPS (Advanced Microprocessor and Power-aware Systems)

Research Interests:

  • Dynamic power and thermal management for computer systems
  • Power and performance optimization of energy harvesting real-time embedded systems
  • Neuromorphic computing and high performance computing for cognitive applications

Current Research:

Excessive energy dissipation has become one of the limiting factors that prevents the sustained growth of computation power of IT facilities. High power consumption reduces system reliability, increases energy and cooling cost, and cuts the battery cycle time of mobile devices. Aiming at curbing the system energy dissipation, green computing has attracted substantial interests in recent years. Dr. Qiu’s primary research interest covers different areas in green computing, from runtime power and thermal management of computer systems to energy harvesting real-time embedded system. The goal of her research is to provide machine intelligence to today’s computing platforms to achieve autonomous resource management with energy and thermal awareness.

Her second research area is architecture design of neuromorphic computing. Neuromorphic computing refers to the emerging computation concept inspired by the principles of information processing in human neural system. It is widely accepted that human beings are much superior to machines in some areas such as image recognition. With the increase of our knowledge on brain function and our capability in realizing massive parallel computation and communication, it is time to investigate new algorithm and hardware architecture for signal processing and perception. Dr. Qiu’s research focuses on the software and hardware development for such computing systems.

Courses Taught:

  • VLSI Design
  • Computer architecture

Honors:

  • ACM SIGDA Distinguished Service Award (2011)
  • NSF Career Award (2009)
  • American Society for Engineering Education (ASEE) Summer Research Faculty Fellowship (2007)

Selected Publications:

Shen, Y. Tan, J. Lu, Q. Wu and Qinru Qiu, “Achieving Autonomous Power Management Using Reinforcement Learning,”ACM Transactions on Design Automation of Electronic Systems, Vol. 18, Iss. 2, pp. 24032, March 2013.

Ge, Qinru Qiu, and Q. Wu, “A Multi-Agent Framework for Thermal Aware Task Migration in Many-Core Systems,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Volume: 20 , Issue: 10, pp. 1758 – 1771, 2012.

Liu, J. Liu, Q. Wu and Qinru Qiu, “Harvesting-Aware Power Management for Real-Time Systems with Renewable Energy,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Volume: 20 , Issue: 8, pp. 1473 – 1486, 2012.

Qinru Qiu, Q. Wu, M. Bishop, R. Pino, and R. W. Linderman, “A Parallel Neuromorphic Text Recognition System and Its Implementation on a Heterogeneous High Performance Computing Cluster,” IEEE Transactions on Computers, Digital Object Identifier: 10.1109/TC.2012.50.

H. Lu, Qinru Qiu, A. R. Butt and K. W. Cameron, “End-to-End Energy Management,” Computer, 44 (11), November 2011.

Susan Older

Degrees:

  • B.S. in Computer Science, Washington University
  • Ph.D. in Pure & Applied Logic, Carnegie Mellon University

Research Interests:

  • Semantics of programming languages
  • Logics of programs
  • Access control, security, and trust
  • Concurrency theory

Current Research:

My research primarily focuses on the development and application of mathematical models and specialty logics that support reasoning about complex system behavior, such as concurrency and cyber security. My recent work (joint with Shiu-Kai Chin) has centered on a modal logic for reasoning about access control, security, and trust. This logic can be applied at all levels of abstraction, from organizational policies to network protocols to operating-system requirements to hardware.

I am also interested in the technology transfer of these ideas (specifically, through undergraduate and graduate education): how does one best enable budding engineers and computer scientists to deploy these methods to develop assured systems?

Courses Taught:

  • Discrete mathematics
  • Functional programming
  • Programming languages
  • Applications of formal methods for assurance

Selected Publications:

Textbook

Shiu-Kai Chin and Susan Older, Access Control, Security, and Trust: A Logical Approach, Taylor & Francis CRC Press, 2011.

Articles

Susan Older and Shiu-Kai Chin, “Engineering Assurance at the Undergraduate Level,” IEEE Security & Privacy, Volume 10, Number 6, pages 74-77, Nov/Dec 2012.

Shiu-Kai Chin, Erich Devendorf, Sarah Muccio, Susan Older, and James Royer, “Formal Verification for Mission Assurance in Cyberspace,” Proceedings of the 16th Colloquium for Information Systems Security Education, Orlando, Florida, June 2012.

Glenn Benson, Shiu-Kai Chin, Sean Croston, Karthick Jayaraman, and Susan Older, “Credentials Management for High-Value Transactions,” in Igor Kotenko and Victor Skormin (Eds.), Computer Network Security, 5th International Conference on Mathematical Methods, Models and Architectures for Computer Network Security (MMM-ACNS), St. Petersburg, Russia, September 2010.

Jae C. Oh

Degree(s):

  • Ph.D in Computer Science, The University of Pittsburgh

Lab/Center Affiliation(s):

  • Distributed Multi-agent Systems Laboratory (Director)

Research Interests:

  • Applications of Artificial Intelligence to distributed systems, multi-agent systems, swarm robotics, big-data visualizations, and cyber-physical systems
  • Game theory
  • Social network analysis

Current Research:

I am interested in studying interaction dynamics among multiple entities in networked and non-networked environments, resource allocation and management in distributed environments, dialogical artificial intelligence, and studies on visual dialogues and visual art.

Courses Taught:

  • Operating systems
  • Artificial intelligence
  • Game theory
  • Distributed systems
  • Multi-agent systems

Honors:

  • Distinguished Scholar, International Society of Applied Intelligence, 2011.

Selected Publications:

Nathaniel Gemelli, Jeffrey Hudack, Steven Loscalzo and Jae Oh, “”Using Coalitions with Stochastic Search to solve Distributed Constraint Optimization Problems,” in Proceedings of the 7th International Conference on Agents and Artificial Intelligence. 2015

A Game Theoretic Framework for Community Detection, The 2012 IEEE/ACM International Conference in Social Networks Analysis and Mining, ASONAM 2012. Best Paper Award. with K. Mehrotra and P. McSweeny

An Open Co-op Model for Global Enterprise Technology Education: Integrating the Internship and Course Work. SIGCSE 2012. With J. Saltz.

Joo Lee and Jae C. Oh, A Node-Centric Reputation Computation Algorithm on Online Social Networks, in Lecture Notes in Social Networks: Application of Social Media and Social Network Analysis, Springer International Publishing, Eds:, Kazienko, Przemyslaw and Chawla, Nitesh, Pages 1-22.

Jae C. Oh, Emergence of self-reflection through visual dialogues based on evolutionary algorithms,” a description of Informatrix III from a computer science perspective, in the Art Catalogue of 14th International Festival of Intermedia Art, Maribor, Solvenia,October 13, 2008, English), ISBN 978-961-6154-19-2, an Art Catalogue

Wonkyung Park and Jae C. Oh, \New Entropy Model for Extraction of Structural Information from XCS Population,” Proceedings of the Genetic and Evolutionary Computation Conference 2009 (GECCO 2009), July, Montreal, Canada, ACM, Best paper award.

Young B. Moon

Degree(s):

  • Ph.D., Purdue University
  • M.S., Stanford University
  • B.S., Seoul National University

Lab/Center Affiliation(s):

  • Institute for Manufacturing Enterprises

Research Interests:

  • Systems Modeling and Simulation
  • Sustainability and Enterprise Systems
  • Product Lifecycle Management

Current Research:

Professor Moon’s research involves using modeling and simulation methods to develop effective and innovative solutions to complex systems problems such as CyberManufacturing Systems, New Product Development Processes, Enterprise Systems, and Sustainable Manufacturing.

Courses Taught:

  • Simulation and Data Analytics
  • Statistics for Engineers
  • Sustainable Manufacturing
  • Modeling and Optimization Techniques

Honors:

  • Fulbright Scholar
  • Syracuse University’s College of Engineering and Computer Science Faculty Excellence Award

Selected Publications:

Y.B. Moon, “Simulation Modeling for Sustainability: A Review of the Literature,” International Journal of Sustainable Engineering, vol. 10, no. 1, pp. 2-19, 2017.

M. Wu, V. Phoha, Y.B. Moon and A.K. Belman, “Detecting Malicious Defects in 3D Printing Process Using Machine Learning and Image Classification,” Proceedings of the International Mechanical Engineering Congress & Exposition, Phoenix, AZ, November 11-17, 2016.

Z. Song and Y.B. Moon, “Performance Analysis of CyberManufacturing Systems: A Simulation Study,” Proceedings of the IFIP 13th International Conference on Product Lifecycle Management (IFIP Advances in Information and Communication Technology, volume 492), Columbia, SC, July 11-13, 2016.

M. Wu and Y.B. Moon, “Spurring Innovation in a Sustainable Manufacturing Course,” Proceedings of the ASEE Annual Conference & Exposition, New Orleans, LA, June 26-29, 2016.

Y. B. Moon and M. Wu, “Innovation within the constraints of sustainability: analysis of product development projects,” (with Mingtao Wu), Proceedings of the Frontiers in Engineering Conference, El Paso, TX, October 21-24, 2015.

B. Wang, S. Breme and Y.B. Moon, “Hybrid Modeling and Simulation Method for Lifecycle Assessment,” Computers and Industrial Engineering, vol. 69, pp. 77-88, 2014.

K.R. Reddi, W. Li, B. Wang and Y.B. Moon, “System Dynamics Modeling of Hybrid Renewable Energy Systems and Combined Heating & Power Generator,” International Journal of Sustainable Engineering, vol. 6, no. 1, pp. 31-47, 2013.

K.R. Reddi and Y.B. Moon, “System Dynamics Modeling of New Product Development and Engineering Change Management in a Collaborative Environment,” International Journal of Production Research, vol. 51, no. 17, pp. 5271-5291, 2013.

W. Li and Y.B. Moon, “Modeling and Managing Engineering Changes in a Complex Product Development Process,” International Journal of Advanced Manufacturing Technology, vol. 63, no. 9-12, pp. 863-874, 2012.

Shikha Nangia

Degrees:

  • Ph. D. Chemistry (2006) University of Minnesota, Twin Cities
  • M.Sc. Chemistry (2000) Indian Institute of Technology, Delhi, India
  • B.Sc. Chemistry (1998) University of Delhi, Delhi, India

Lab/Center Affiliation:

  • Syracuse Biomaterials Institute

Research interests:

  • Blood-brain barrier
  • Targeted cancer drug delivery
  • Multiscale modeling of nanomaterials
  • Nanomedicine
  • Virus nanotechnology

Current Research:

My research group focuses on studying blood-brain barrier using theoretical and computational techniques. The goal is to enable the transport of drug molecules across the blood-brain barrier, which has been the biggest impediment for finding a cure for brain related ailments such as Alzheimer’s and Parkinson’s diseases. This project was funded through the NSF-CAREER award.

Additionally, we our group focuses on computational multiscale modeling of nanomaterials, including nanomedicine, drug delivery nanocarriers, and nano-bio interactions. The goal of this research is to design efficient nanosized drug delivery carriers to target cancer tumor cells that hold the key to a new era of cancer treatment. To achieve our research goals we are developing quantitative approaches for characterizing interaction of nanoscale entities with living matter (serum, cell-membranes, cells). Our computational approaches are directed to analyze these complex nano-bio interactions in an effort to design safe and smart drug delivery nanocarriers.

Courses Taught:

  • Statistical thermodynamics
  • Multiscale computational methods
  • Reaction kinetics
  • Engineering Materials, Properties, and Processing

Honors:

  • 2017 Dean’s Award for Excellence in Education
  • 2017 Meredith Teaching Recognition Award
  • 2016 College Technology Educator of the Year, Technical Alliance of Central New York
  • 2016 ACS OpenEye Outstanding Junior Faculty Award
  • 2015 Nappi Research Competition Award
  • NSF CAREER award (2015)
  • Faculty Excellence Award, College of Engineering and Computer Science, Syracuse University (2015)

Recent Publications:

Development of effective stochastic potential method using random matrix theory for efficient conformational sampling of semiconductor nanoparticles at non-zero temperatures, J. Scher, M. Bayne, A. Srihari, S. Nangia, and A. Chakraborty, Journal of Chemical Physics, 149, 014103 (2018). https://aip.scitation.org/doi/10.1063/1.5026027
Self-assembly simulations of classic claudins-insights into the pore structure, selectivity and higher-order complexes, F. J. Irudayanathan, X. Wang, N. Wang, S. Willsey, I. Seddon, and S. Nangia, Journal of Physical Chemistry B, 122, 7463-7474 (2018). https://pubs.acs.org/doi/10.1021/acs.jpcb.8b03842

Mechanism of Antibacterial Activity of Choline-Based Ionic Liquids (CAGE), Kelly N. Ibsen, H. Ma, A. Banerjee, E. E. L. Tanner, S. Nangia, and S. Mitragotri, ACS Biomaterials Science and Engineering, 4, 2370-2379 (2018). https://pubs.acs.org/doi/abs/10.1021/acsbiomaterials.8b00486

Dynamics of OmpF trimer formation in the bacterial outer membrane of Escherichia coli, H. Ma, A. Khan, and S. Nangia, Langmuir, 34, 5623-5634 (2018). https://pubs.acs.org/doi/10.1021/acs.langmuir.7b02653

Architecture of the paracellular channels formed by Claudins of the blood-brain barrier tight junctions, F. J. Irudayanathan, N. Wang, X. Wang , and S. Nangia, Annals of the New York Academy of Sciences, 1749-6632 (2017). https://nyaspubs.onlinelibrary.wiley.com/doi/full/10.1111/nyas.13378

Modeling diversity in structures of bacterial outer membrane lipids H. Ma, D. D. Cummins, N. B. Edelstein, J. Gomez, A. Khan, M. D. Llewellyn, T. Picudella,  S. R. Willsey and S. Nangia, Journal of Chemical Theory and Computation, 13, 811–824 (2017). http://dx.doi.org/10.1021/acs.jctc.6b00856

Drug-specific design of telodendrimer architecture for effective Doxorubicin encapsulation, W. Jiang, X. Wang, D. Guo, J. Luo, and S. Nangia, Journal of Physical Chemistry B, 120, 9766–9777 (2016).  http://dx.doi.org/10.1021/acs.jpcb.6b06070

Sinéad C. Mac Namara

Degree(s):

  • MSE PhD from Princeton University
  • BA, BAI from Trinity College, University of Dublin

Research interests:

  • collaborative practice in architecture and engineering
  • innovation and creativity in structural engineering education;
  • structural engineering design and structural art;
  • structural performance of shell structures.
  • community engaged and public interest design
  • design build education

Current Research:

Emerging Tools in Structural Engineering

The project Emerging Tools in Structure and Design, will focus on new and emerging design and construction methodologies that are making possible a new generation of structural form and form making. Generation and optimization software; rationalization and analysis tools; and fabrication methods, have all advanced considerably in recent years and are having huge influence on the cutting edge of collaborative practice between architecture and engineering. These tools facilitate ever more radical form making in ever more rational ways and make possible formal expressions and structural efficiencies and elegance that would have been prohibitively complex a mere handful of years ago. Although these tools are highly technical in nature, it can be argued that their development has been driven by speculative architectural design work, and that they are responding to the considerable and significant change in representation tools and construction capability in recent years.

The project will initiate a critical comparative analysis of these emerging tools. I want to trace the origin of the tools, the development, use in the design process, and ultimately the influence on contemporary design and design processes. Do these tools facilitate, or I dare say require, deeper and more rigorous collaboration between disciplinary specific technical experts and architects? How are these tools allowing for rapid testing of speculative designs? Do the tools make possible financial or material savings? In what ways do they impact the nature of the engineer/architect relationship? Does “authorship” enter into the equation? There is much to explore and

Courses taught:

  • Structures II (ARC 311/ARC 612)
  • Advanced Structural Resolution (ARC 500)
  • CEED: Community Engaged Engineering Design (ARC 500)
  • Structures and Innovation (HNR 360)
  • Design of Concrete Structures (CEE 332)
  • Thesis Prep (ARC 509)
  • Thesis (ARC 510)

Honors:

  • Chancellors Award for Public Engagement and Scholarship, ARC 500 Community Engaged Engineering Design Park Studio, Syracuse University, Spring 2014.
  • AIA New York State Merit Award for Mir’aj with Julie Larsen and Roger Hubeli, April 2014.
  • American Collegiate Schools of Architecture, 2014 ACSA National Design Build Educator Award for Play Perch.
  • American Institute for Architecture Students Freedom By Design, National Community Inspiration Award for Play Perch, January 2014.
  • Chancellors Award for Public Engagement and Scholarship, ARC 490 and 690 Design+Build Play Perch, Syracuse University, Spring 2013.
  • American Society for Engineering Education, St. Lawrence Division, Outstanding Teacher Award. Spring 2013.
  • Reinvent Payphones Design Challenge NYC Mayor’s Office, Selected Winner: Best Functionality, Spring 2013.
  • Best Presentation, Architectural Engineering Division, American Society for Engineering Education, Annual Conference and Exposition, Vancouver BC, June 2011.
  • Meredith Teaching Recognition Award, Syracuse University, Spring 2011.
  • Princeton E-council Award for Teaching Excellence for CEE 366, Spring 2005.

Selected Publications:

S.C. Mac Namara. L. D. Bowne. Controlled Chaos: Modeling Interdisciplinary Practice for Architecture and Engineering Students in a Real World Community Engaged Design Project. Proceedings of the American Society for Engineering Education 2015 Annual Conference and Exposition, Seattle, WA, June 2015.

S.C. Mac Namara. J. V. Dannenhoffer, Scaling Up: The Design Competition as a Tool for Teaching Statics. Proceedings of the American Society for Engineering Education St, Lawrence Division Conference, Syracuse, April 2015.

S.C. Mac Namara. L. D. Bowne. Book Chapter “Play Perch” in Green, Hidden and Above – The Most Exceptional Tree-houses. Sibylle Kramer, Author. 2015. Braun Publishing.

S.C Mac Namara, C. J. Olsen. Collaborations in Architecture and Engineering. Albeena Magazine, Saudi Arabia. March 2013.

S.C. Mac Namara, C. J. Olsen. Collaborations in Architecture and Engineering . Routledge July 2014.

S.C. Mac Namara. L. D. Bowne. Controlled Chaos: Modeling Interdisciplinary Practice for Architecture and Engineering Students in a Real World Community Engaged Design Project. Proceedings of the American Society for Engineering Education 2015 Annual Conference and Exposition, Seattle, WA, June 2015.

S.C. Mac Namara. J. V. Dannenhoffer, Scaling Up: The Design Competition as a Tool for Teaching Statics. Proceedings of the American Society for Engineering Education St, Lawrence Division Conference, Syracuse, April 2015.

S.C. Mac Namara. L. D. Bowne. Book Chapter “Play Perch” in Green, Hidden and Above – The Most Exceptional Tree-houses. Sibylle Kramer, Author. 2015. Braun Publishing.

S.C Mac Namara, C. J. Olsen. Collaborations in Architecture and Engineering. Albeena Magazine, Saudi Arabia. March 2013.

S.C. Mac Namara, C. J. Olsen. Collaborations in Architecture and Engineering . Routledge July 2014.

S.C. Mac Namara. Expanding Expectations: A Community Service Accessible Design-Build Project as an Instigator of Curricular Change. Proceedings of the BTES Building Technology Educators Society Conference 2013 “Tectonics of Teaching” Bristol, R. I, July 2013.

S.C. Mac Namara. R. Svetz, Hidden in Plain Sight: Campus Scavenger Hunt to Teach Structures and Technology to Architects. Proceedings of the American Society for Engineering Education 2013 Annual Conference and Exposition, Atlanta, Georgia, June 2013.

S.C. Mac Namara. J. V. Dannenhoffer, First Encounters: Statics as the Gateway to Engineering Culture. Proceedings of the American Society for Engineering Education 2013 Annual Conference and Exposition, Atlanta, Georgia, June 2013.

S.C. Mac Namara. J. V. Dannenhoffer, Hands-On Learning for Statics in the Smaller Classroom and Potential Scale-Up to the Larger Lecture. Proceedings of the American Society for Engineering Education 2013 Northeast Section Conference. Norwich, VT. March 2013 .

S.C. Mac Namara. Structural Art in Contemporary Engineering Education Festschrift Billington. editors: Hines, Buonopane, & Garlock, International Network for Structural Art, Princeton 2012.

S.C. Mac Namara. Bringing Engineering into the Studio: Design Assignments for Teaching Structures to Architects. Proceedings of the American Society for Engineering Education 2012 Annual Conference and Exposition, San Antonio, Texas, June 2012

S.C. Mac Namara. Topology Optimization: The Use of Cutting Edge Numerical Methods in Teaching Structures to Architects. Proceedings of the American Society for Engineering Education 2012 Annual Conference and Exposition, San Antonio, Texas, June 2012 (abstract accepted).

S.C. Mac Namara. The Design Competition as a Tool for Teaching Statics. Proceedings of the American Society for Engineering Education 2012 Annual Conference and Exposition, San Antonio, Texas, June 2012 (abstract accepted).

C.J. Olsen, S.C. Mac Namara. In Support of Pre-Professional Relations: Guidelines for Effective Educational Collaborations between Architecture and Engineering. Proceedings of the 100th Annual ACSA Meeting, Boston MA, March 1-4, 2012.

S.C. Mac Namara, S.P. Clemence. The Value of Short Term Study Abroad for Civil Engineering Students. Proceedings of the 2011 ICEE Conference on Engineering Education, University of Ulster, Belfast, Northern Ireland, August 21-26, 2011.

C.J. Olsen, S.C. Mac Namara. The Value of Trans-disciplinary Design Education with Architects for Engineering Students. Proceedings of the 2011 ICEE Conference on Engineering Education, University of Ulster, Belfast, Northern Ireland, August 21-26, 2011.

S.C. Mac Namara. Trans-disciplinary Design Teaching for Civil Engineers and Architects – Lessons Learned and Future Plans. Proceedings of the American Society for Engineering Education 2011 Annual Conference and Exposition, Vancouver Canada, June 2011.

S.C. Mac Namara. Pedestrian Bridges – Structural Design by Masters of Architecture Students. Proceedings of the American Society for Engineering Education 2011 Annual Conference and Exposition, Vancouver Canada, June 2011.

S.C. Mac Namara. The Use of Historical Precedent in Teaching Structures to Architecture Students. Proceedings of the American Society for Engineering Education 2011 Annual Conference and Exposition, Vancouver Canada, June 2011.

S.C. Mac Namara. Are We Asking the Wrong Questions? A study of student familiarity with common textbook examples. Proceedings of the ASEE Global Colloquium on Engineering Education, Singapore, October 18-22, 2010.

S.C. Mac Namara. Statics 2.0 – Reimagining a core course for increased innovation and creativity. Proceedings of the ASEE Global Colloquium on Engineering Education, Singapore, October 18-22, 2010.

S.C. Mac Namara, C.J. Olsen, Scott L. Shablak, Carolina B. Harris. Merging Engineering and Architectural Pedagogy – A Trans-disciplinary Opportunity? Proceedings of the 2010 ICEE Conference on Engineering Education, Silesian University of Technology, Gliwice, Poland, July 18-22, 2010.

S.C. Mac Namara, C.J. Olsen, L. J. Steinberg, S.P. Clemence. Inspiring Innovation. Proceedings of the American Society for Engineering Education 2010 Annual Conference and Exposition, Louisville Kentucky, June 2010.

S.C. Mac Namara, M. Garlock, D.P. Billington. Structural Response of Nuclear Containment Shield Buildings with Construction Openings, ASCE Journal of Performance of Constructed Facilities, Vol. 21, No. 2, March/April 2007, pp. 152-156.

S.C. Mac Namara, M. Garlock. Delamination in Two Layer Thin Shell Dome with Unanticipated Construction Openings Proceedings of the 6th International Conference on Computation of Shell and Spatial Structures IASS-IACM 2008: “Spanning Nano to Mega”, John F. ABEL and J. Robert COOKE (eds.) Cornell University, Ithaca, NY, 28-31 May 2008.

S.C. Mac Namara, D.P. Billington. Delamination and the structural response of thin shell concrete in nuclear shield buildings with unanticipated construction openings. Proceedings of the 6th annual international conference on fracture mechanics of concrete and concrete structures, Catania, Italy, 17-22 June 2007.

S.C. Mac Namara, C. J. Olsen. Collaborations in Architecture and Engineering . Routledge July 2014.

Jennifer W. Graham

Electromagnetic, complex media, antenna design and modeling

Education:

  • B.S.E.E Syracuse University, 2000
  • M.S.E.E. Syracuse University, 2004
  • Ph.D. Syracuse University, 2012

Current Research:

My current research includes understanding the behavior of electromagnetic waves in complex media specifically anisotropic media. I have studied biaxially anistropic media with the most depth including wave propagation and reflection and transmission.

I also have research interest in antennas including antenna modeling and measurement. I have combined research areas by modeling microstrip antennas printed on biaxially anisotropic substrates.

Courses taught:

  • ECS 101:  Introduction to Engineering and Computer Science
  • ELE 331:  Digital Circuits and Systems
  • ELE 333:  Analog Circuits
  • ELE 621:  Electromagnetic Fields
  • ELE 623:  Microwave Measurements
  • ELE 722:  Microwave Filters
  • ELE 726:  Computational Methods of Field Theory

Selected Publications:

J.W. Graham, J.K. and Lee, “Electromagnetic Waves in Biaxially Anisotropic Media,” Wiley Encyclopedia of Electrical and Electronics Engineering. 1–15 2015.

J.W. Graham and J. K. Lee, “Reflection and Transmission from Biaxially Anisotropic-Isotropic Interfaces,” Progress in Electromagnetic Research, PIER 136, 681-702, 2013.

J.W. Graham and J. K. Lee, “Rectangular Patch Antennas on Biaxial Substrates,” IEEE International Symposium on Antennas and Propagation, Orlando, FL July 2013.

J.W. Graham and J. K. Lee, “Microstrip Dipoles Printed on Biaxial Substrates,” IEEE International Symposium on Antennas and Propagation, Chicago, IL July 2012.

J.W. Graham and J. K. Lee, “Reflection and Transmission at Isotropic-Biaxial Interface,” URSI General Assembly and Scientific Symposium, Istanbul, Turkey, August 2011.

J.W. Graham, G. F. Pettis, and J. K. Lee, “Symmetrical Property of Dyadic Green’s Functions for Layered Anisotropic Medium,” IEEE International Symposium on Antennas and Propagation/URSI National Radio Science Meeting, Toronto Ontario, Canada, July 2010.

Cliff I. Davidson

Degree(s):

  • Ph.D., Environmental Engineering Science, California Institute of Technology, 1977.
  • M.S., Environmental Engineering Science, California Institute of Technology, 1973.
  • B.S., Electrical Engineering, Carnegie Mellon University, 1972.

Lab/Center Affiliation(s):

  • Center of Excellence in Environmental and Energy Systems
  • Director, Center for Sustainable Engineering

Research Interests:

  • Environmental transport and fate of pollutants
  • Sources of airborne particles in urban and remote areas
  • Measurement and modeling of atmospheric dry and wet deposition of pollutants
  • Emission inventories for airborne lead
  • Emission inventories for airborne ammonia
  • Human perceptions of energy use from day-to-day activities
  • Assessment of performance of green infrastructure for stormwater management
  • Sustainable development in urban areas
  • Use of field measurements to promote STEM education

Current Research:

Davidson is currently studying the rapid changes in development of green infrastructure (GI) for stormwater management taking place in US urban areas. Examples of GI include green roofs, green walls, constructed wetlands, street trees, rain gardens, expansion of urban green space, and permeable pavement. One project involves the role of political, economic, and social factors that have enabled GI to be adopted at increasing rates in recent years. This project is examining the reasons why several US metro regions including Syracuse have accepted green infrastructure wholeheartedly, while other urban areas have decided against the use of GI, opting for conventional gray infrastructure such as holding tanks, larger pipes, and expanded treatment plants. A second project is examining the performance of GI projects in Syracuse, currently focusing on the Convention Center Green Roof. This project involves measuring the incoming precipitation, water storage in the growth medium and plants on the roof, rates of evaporation and evapotranspiration from the roof, and water flows in the drain pipes running from the roof into the combined sewer system. A third project is examining chemical contaminants in stormwater runoff, identifying the sources of those contaminants, and studying their eventual fate.

Courses Taught:

  • CEE 562 Air Resources I
  • ECS 650 Managing Sustainability: Purpose, Principles, and Practices
  • CEE 463/663 Introduction to Sustainable Engineering
  • Professional development workshops for faculty around the country on developing sustainability content for engineering courses

Honors:

  • Fellow, Association of Environmental Engineering and Science Professors, elected 2015
  • Fellow, American Association for Aerosol Research, elected 2008
  • United Methodist University Scholar-Teacher Award, Syracuse University 2014
  • William H. and Frances M. Ryan Award for Meritorious Teaching, Carnegie Mellon University, 2009.
  • 2009 Outstanding Paper Award, Literati Network Awards for Excellence, Emerald Group Publishing, for a paper in the International Journal of Sustainability in Higher Education that appeared in 2008.
  • Phillip Dowd Fellowship, College of Engineering, CMU, 2007.
  • Outstanding Educator Award, Association of Environmental Engineering and Science Professors, 2007.
  • Charles Beyer Distinguished Lecturer, Civil and Environmental Engineering, University of Houston, 2006.
  • American Association for Aerosol Research, Service Award for serving as Co-Chair of the International Conference “Particulate Matter: Atmospheric Sciences, Exposure, and the Fourth Colloquium on PM and Human Health,” Pittsburgh, PA, April 1-4, 2003.
  • Jubilee Chair Professorship, Chalmers University, Gothenburg, Sweden, 1997-98.
  • Parsons ES/AEEP Award for serving as thesis advisor to the recipient of the 23rd Annual Doctoral Thesis Award, Parsons Engineering Science and Association of Environmental Engineering Professors, 1996.
  • Benjamin Richard Teare Award for Excellence in Engineering Education, Carnegie Mellon University, 1992.
  • Outstanding Professor of the Year Award, American Society of Civil Engineers, Pittsburgh Section, 1989.
  • Ralph R. Teetor Award given to young engineering educators with less than five years experience, Society of Automotive Engineers, 1982.
  • George Tallman Ladd Award for Outstanding Research, Carnegie Mellon University, 1980.
  • First Annual Lincoln T. Work Award, Fine Particle Society, August 1976.
  • Chosen by Carnegie Mellon University as the CMU nominee for “Outstanding Electrical Engineering Student in the U.S., 1972″, Sponsored by Eta Kappa Nu.

Select Publications:

Squier-Babcock, Mallory and Cliff I. Davidson, Hydrologic performance of an extensive green roof in Syracuse, NY, Water, Vol. 12, Number 6, https://doi.org/10.3390/w12061535, May 28, 2020.

Johnson, Alexander J. and Cliff I. Davidson, Measuring atmospheric dry deposition with large surrogate surfaces for improved time resolution, Atmospheric Environment, Vol. 198, Number 1, pages 489-495, https://doi.org/10.1016/j.atmosenv.2018.10.055, Feb. 2019.

Markolf, Samuel A., Mikhail V. Chester, Daniel A. Eisenberg, David M. Iwaniec, Benjamin L. Ruddell, Cliff I. Davidson, Rae Zimmerman, Thaddeus R. Miller, and Heejun Chang, Interdependent Infrastructure as Linked Social, Ecological, and Technological Systems (SETS) to Address Lock-In and Enhance Resilience, Earth’s Future, Vol. 6, Issue 12, pages 1638-1659, http://dx.doi.org/10.1029/2018EF000926, December 2018.

Rosenzweig, Bernice R., Lauren McPhillips, Heejun Chang, Chingwen Cheng, Claire Welty, Marissa Matsler, David Iwaniec, and Cliff I. Davidson, Pluvial Flood Risk and Opportunities for Resilience, Wiley Interdisciplinary Reviews: Water, Vol. 5, Issue 6, http://dx.doi.org/10.1002/wat2.1302, July 2018.

Flynn, Carli D., Cliff I. Davidson, and Sharon Dotger, Development and psychometric testing of the Rate and Accumulation Concept Inventory, Journal of Engineering Education, Vol. 107, Issue 3, https://dx.doi.org/10.1002/jee.20226, September 29, 2018.

Davidson, C.I., Brad R. Allenby, Liv M. Haselbach, Miriam Heller, and William E. Kelly, Educational materials on sustainable engineering: do we need a repository? Elementa, February 23, 2016, DOI10.12952/journal.elementa.000089.

Thong Dang

Degree(s):

  • Ph.D., MIT

Research Interests:

  • Fluid Mechanics, CFD
  • Aerodynamics, Propulsion, Turbomachine
  • Energy & Indoor Environment Quality

Current Research:

Professor Dang’s research interests are in fluid mechanics (CFD), aerodynamics, propulsion, turbomachine and energy and indoor environment quality.

In the area of aerodynamics/propulsion/turbomachine, research interests include novel airfoil concepts for propulsion and circulation control by embedding crossflow fans into the airfoil/wing, body-force modelling of bypass fan system in full aircraft CFD simulations under 3D inlet distortion, development of highly-coupled coil and wide-angle vane-diffuser axial fan concept, aerodynamics and design of cooling fan in compact and high-power computer servers.

In the area of lndoor Air Quality (IAQ) and Energy Systems, research interests include studies to improve the personal micro-environment in built-environments (e.g. building offices, aircraft cabins) using local air delivery and removal systems, control of natural ventilation in tall buildings with aerodynamic shape via manipulating building envelope pressure loading with emphasis on the use of novel concepts to synergistically harvest wind energy and improve IAQ, and flow/thermal management from server to data-center room levels.

Courses Taught:

  • AEE 343 Compressible Flow
  • AEE 446 Aerospace Propulsion
  • MAE 571 Applications of CFD
  • MAE 585 Principles of Turbomachines
  • MAE 643 Fluid Dynamics
  • MAE 771 Computational Fluid Mechanics

Selected Publications:

Mao, Y. and Dang, T., “A Three-Dimensional Body-Force Model for Nacelle-Fan Systems under Inlet Distortion,” Aerospace Science and Technology, vol. 106, November 2020.

Mao, Y. and Dang, T., “A Simple Approach for Modeling Fan Systems with a CFD-Based Body-Force Model”, AIAA Journal of Propulsion and Power, June 2020.

Kong, M., Zhang, J., Dang, T., Hedge, E., Teng, T., Carter, B., Chianese, C., and Khalifa, E., “Micro-environmental Control for Efficient Local Cooling: Results from Manikin and Human Subject Tests,” Building & Environment, 160, 2019.

Kong, M., Dang, T., Zhang, J. and Khalifa, E., “Micro-environmental Control for Local Heating: CFD Simulation and Manikin Test Verification,” Building & Environment, 147, 2019.

Phan, N., Welles, A., Sarimurat, M. and Dang, T., “Leading Edge Embedded Fan Airfoil Concept – A New Powered High Lift Technology,” presented at the International Power Lift Conference, Bristol, UK, November 2018.

Andria Costello Staniec

Andria Costello Staniec was named Associate Provost for Academic Programs for Syracuse University in July of 2012, becoming the senior leader in Academic Affairs charged with ensuring the quality and effectiveness of academic programs and the academic success of SU students, including the collaborative development of policies and programs that promote instructional quality, advising effectiveness and student success.

Costello Staniec joined the faculty at Syracuse University in January, 1999. She received a Bachelor of Science in Applied Biology from the Georgia Institute of Technology in 1992. Dr. Costello Staniec earned her Master’s and doctoral degrees in Environmental Engineering Science from the California Institute of Technology in 1995 and 1999, respectively. Her graduate study was performed in the broad area of applied environmental microbiology. As a graduate student, Dr. Costello Staniec was awarded a National Science Foundation Graduate Fellowship. Dr. Costello Staniec is a member of the American Society for Engineering Education, the American Chemical Society, the American Society for Microbiology, the Association of Environmental Engineering and Science Professors, and the Society of Women Engineers.

Costello Staniec teaches courses in the department of Civil and Environmental Engineering at both the undergraduate and graduate levels. Her classes are in the areas of environmental microbiology and biotechnological applications in engineering. Costello Staniec conducts multidisciplinary research aimed at elucidating the complex relationships between microbial diversity and function. Her research is focused on the development and application of molecular and microbiological tools to investigate both natural and engineered systems. Costello Staniec’s research interests include issues related to bioremediation, global biogeochemical cycles, and changes in microbial communities in response to anthropogenic disturbance.

Research Interests:

Costello Staniec is currently investigating the diversity of the methane oxidizing bacteria (methanotrophs) in soils in the northeastern United States. Methanotrophs are a group of bacteria that grow on methane as their sole source of carbon and energy. They can be isolated from a wide variety of environments and are believed to be ubiquitous in nature. Increased attention has been focused on the ecological implications of methane oxidation and the role of methanotrophs in both the global methane budget and the bioremediation of halogenated solvents. Research in the Costello Staniec lab has led to the development of tools designed to assess the microbial diversity and function of methanotrophs in natural and engineered systems. Costello Staniec is currently investigating the role of methanotrophs in the global carbon cycle at study sites in New York, Vermont, New Hampshire, and Maine.

In addition to her work with methanotrophs, Costello Staniec is involved with work relating microbial diversity to function at the Hubbard Brook Experimental Forest (HBEF). Her research at the HBEF addresses the factors controlling microbial diversity in a northern hardwood forest and the relationships between microbial diversity, community structure, and microbial function in the ecosystem. Recent work includes the study of the effects of an entire watershed manipulation (liming) on soil microbial populations as well as investigations into the effects of acidic deposition on belowground microorganisms.

Teaching Interests:

  • Environmental Engineering
  • Environmental Microbiology
  • Bioremediation
  • Biotechnology

Katie Cadwell

Professional Preparation:

  • B.S. in Chemical Engineering, Missouri University of Science & Technology (formerly University of Missouri-Rolla)
  • Ph.D. in Chemical Engineering, Thesis Advisor: Nicholas L. Abbott, University of Wisconsin-Madison
  • Post-doctoral Research Associate in STEM Education and Outreach, Interdisciplinary Education Group, Materials Research Science and Engineering Center, University of Wisconsin-Madison
  • Chemistry Instructor, General Chemistry Coordinator, and Engineering Transfer Program Director, Madison Area Technical College

Teaching Interests:

  • Introduction to Engineering & Computer Science
  • Mass & Energy Balances
  • Chemical Engineering Thermodynamics
  • Chemical Engineering Laboratories
  • Technical Communication & Professional Skills
  • Chemical Process Safety

Education & Outreach Interests:

  • Development of engineering faculty attitudes and pedagogy
  • Professional skill development for engineering students
  • K-to-Gray science and engineering outreach
  • Project ENGAGE (Empowering the Next Generation: Advancing Girls in Engineering)

Honors:

  • AIChE Student Chapter Advisor Honor Roll, 2015-2018
  • 2015 Teaching Recognition Award from the Syracuse University Laura J. and L. Douglas Meredith Professorship Program
  • 2015 Syracuse University Chancellor’s Awards for Public Engagement and Scholarship: Inspiration Award
  • 2014 Syracuse University College of Engineering and Computer Science Dean’s Award for Excellence in Engineering Education
  • 2014 Technology Alliance of Central New York (TACNY) College Technology Educator of the Year

Education & Outreach Publications:

Cadwell, K.D., Blum M. M., Hasenwinkel, J.M., Stokes-Cawley, C. “A Gateway Course Redesign Working Group.” Proceedings of the American Society for Engineering Education 2018 Annual Conference and Exposition, Salt Lake City, UT, 2018.

Stokes-Cawley, C. and Cadwell, K.D. “Project ENGAGE: A Summer Immersion Experience in Engineering for Middle School Girls.” Proceedings of the American Society for Engineering Education St. Lawrence Section Regional Conference, Syracuse, NY, 2015. Reprinted in Transactions on Techniques in STEM Education, 2016, 1(2): 20-29.

Blum, M.M, Cadwell, K.D., Hasenwinkel, J.M. “A mechanics of materials outreach activity: Reconstructing the human body – biomaterials and biomimicry.” Proceedings of the American Society for Engineering Education 2015 Annual Conference and Exposition, Seattle, WA, 2015.

Walz, K.A., Britton, S., Crain, J., Cadwell, K., Hoffman, A., Morschauser, P. “Biodiesel synthesis, viscosity, and quality control for an introductory chemistry lab.” The Chemical Educator, 2014, 19: 342-346.

Hoffman, A., Britton, S., Cadwell, K.D., Walz, K.A. “An integrated approach to introducing biofuels, flash point, and vapor pressure concepts into an introductory college chemistry lab.” Journal of Chemical Education, 2011, 88(2): 197-200.

Michelle M. Blum

Degree:

  • May 2012 Ph.D., Mechanical Engineering, University of Notre Dame, Notre Dame, IN
  • Jan. 2011 M.S., Mechanical Engineering, University of Notre Dame, Notre Dame, IN
  • May 2007 B.S., Mechanical Engineering, Rensselaer Polytechnic Institute, Troy, NY
  • May 2007 B.S., Physics, University of New York at Albany, Albany, NY

Lab/Center Affiliation:

  • Mechanics and Tribology Laboratory

Research Interests:

  • Tribology & Lubrication
  • Mechanical Characterization of Materials
  • Finite Element Analysis

Current Research:

Dr. Blum specializes in high performance materials development and characterization for tribological (friction and wear), structural, and biomedical applications. Her primary research interests are in the development of orthopedic biomaterials, and biomaterial characterization utilizing a combination of experimental techniques, nanoindentation, and computational modeling. Dr. Blum is also interested in characterizing the tribological performance of biological tissues using soft material contact mechanics and simulation. Understanding the structure-property relationships of biological tissues during contacting motion aids her lab in the development of synthetic biomimetic materials.

Teaching Interests:

  • Finite element analysis
  • Tribology & lubrication
  • Solid mechanics

Select Publications:

Synthesis and Characterization of a Zwitterionic Hydrogel Blend with Low Coefficient of Friction Osaheni A.O., Finkelstein, E.B., Mather P.T., Blum M.M. (corresponding author), Acta Biomaterialia, December 2016.

A Mechanics of Materials Outreach Activity: Reconstructing the Human Body: Biomaterials and Biomimicry, Blum M.M. (corresponding author & presenter), Cadwell K., Hasenwinkel J., Paper and Presentation at 2015 ASEE Annual Conference and Exposition, June 2015.

Evaluation of mechanical and tribological properties in comparison with natural cartilage tissue, Blum M.M.(corresponding author) and Ovaert T.C, Materials Science and Engineering C, 2014.

Investigation of friction and surface degradation of innovative boundary lubricant functionalized hydrogel material for use as artificial articular cartilage, Blum M.M., Ovaert T.C., Wear, 2013.

Jackie Anderson

Degrees:

  • Ph.D., Mechanical and Aerospace Engineering, Syracuse University
  • M.S., Mechanical Engineering, Rochester Institute of Technology
  • B.S., Mechanical Engineering, Rochester Institute of Technology

Teaching interests:

  • Engineering Management
  • Thermo/Fluids

Ben Akih-Kumgeh

Degree(s):

  • Ph.D., McGill University

Lab/Center Affiliation(s) (i.e. CoE or SBI):

  • Center of Excellence

Research Interests:

  • Combustion physics and chemistry (chemical kinetics, ignition, flame propagation, extinction, and pollutant formation, turbulent combustion)
  • Applied combustion in gas turbines, internal combustion engines and process burners
  • Fuel technology (formulation, additives and characterization)
  • Thermodynamic analysis of energy systems

Current Research:

Our research interests are in the area of energy conversion, with a special focus on Combustion Physics and Chemistry. Our work is a combination of experiments, combustion theory, and simulations. We determine combustion properties and pollutant formation trends, contribute to detailed and reduced chemical kinetic model development, and use computational fluid dynamics to study turbulence-chemistry interactions in combustion processes.

The ultimate goal is to develop tools for the analysis and design of advanced combustion devices such as gas turbines, internal combustion engines and industrial furnaces. We are also actively involved unravelling the physics of laser-induced initiation of burning processes; an approach that is promising as an alternative reliable ignition source for fuel-flexible engines. Other areas of research include thermodynamic analysis of energy systems and characterization of fuel blends.

Courses Taught:

  • Thermodynamics
  • Advanced thermodynamics
  • Propulsion
  • Combustion phenomena in engineering
  • Selected topics in combustion turbines and internal combustion engines

Honors/Awards:

  • 2014 FilterTech, Pi Tau Sigma, and Sigma Gamma Tau faculty award for Excellence in Engineering Education
  • NSERC Postdoctoral Fellowship, Canada, 2012-2014, declined in favor of faculty position at Syracuse University
  • MITACS/CRIAQ/NSERC internships for doctoral & postdoctoral scholars, held at Rolls-Royce Canada, 2010-2011
  • FQRNT doctoral fellowship in energy research (Provincial fellowship, Quebec, Canada), 2009-2010
  • Sigma Xi Grant-in-Aid-of research, 2010

Selected Publications:

Propanol isomers: Investigation of ignition and pyrolysis time Scales (authors: S. Jouzdani, A. Zhou, Akih-Kumgeh), Combustion & Flame, 176:229-244 2016, 2017.

An experimental and chemical kinetic modeling study of dimethylcyclohexane oxidation and pyrolysis (authors: M.A. Eldeeb, S. Jouzdani, Z.Wang, M. Sarathy, Akih-Kumgeh), Energy & Fuels, 30:86488657, 2016.

Toward improved understanding of the physical meaning of entropy in classical thermodynamic (author: Akih-Kumgeh), Entropy, 18:270(16 pages), 2016.

Unsteady RANS and Scale Adaptive Simulations of Turbulent Spray Flames in a Swirled-Stabilized Gas Turbine Model Combustor using Tabulated Chemistry (authors: A. Fossi, A. deChamplain, and Akih-Kumgeh), Int. J. Numerical Methods for Heat and Fluid Flow, 25:1064–1088, 2015.

Comparative Analysis of Chemical Kinetic Models Using the Alternate Species Elimination Approach (authors: N.D. Peters, Akih-Kumgeh, J.M. Bergthorson), J. Eng. Gas Turbines & Power, 137:021505-1–021505-9, 2014.

Julie M. Hasenwinkel

Degree(s):

  • PhD, Biomedical Engineering, Northwestern University
  • MS, Bioengineering, Clemson University
  • BSE, Biomedical Engineering, Duke University

Lab/Center Affiliation(s):

  • Syracuse Biomaterials Institute

Research Interests:

  • Biomaterials for nerve regeneration
  • Microindentation and Raman spectroscopy of injured tissue and hydrogels
  • Micropatterned and molecularly oriented polymers and hydrogels
  • Two-solution bone cements
  • Injectable materials for traumatic injury
  • Best practices in Engineering Education

Current Research:

The Hasenwinkel lab is focused on translational polymeric biomaterials for applications in orthopedics and nerve regeneration. We study numerous aspects of spinal cord injury; including characterization of the glial scar using micromechanical and spectroscopic techniques, the response of neuronal cells to topographical and mechanical cues, and the development of mechanically active polymer networks to promote nerve regeneration. We are also active in the area of orthopedic biomaterials, specifically in the development of new bone cements for fixation of total joint replacements and treatment of vertebral compression fractures. We study how compositional changes in these cements affect a variety of clinically relevant cement properties and performance.

Teaching Interests:

  • Biomaterial and medical devices
  • Polymer physics

Honors:

  • Wallace H. Coulter Foundation Early Career Translational Research Award, Phases I & II 2007-11
  • Judith Greenberg Seinfeld Distinguished Faculty Fellow, Syracuse University 2006-07
  • Teaching Recognition Award, Syracuse University 2004
  • James D. Watson Investigator Award, New York State Office of Science, Technology, and Academic Research (NYSTAR) 2003

Select Publications:

D.C. Rodrigues, J.L. Gilbert, and J.M. Hasenwinkel, “Two-solution bone cement containing PMMA brushes: properties and effects of brush addition on the physical and mechanical performance of the cement,” accepted for publication in the Journal of Biomedical Materials Research, Part A, Jan 2012.

T. Saxena, J.L. Gilbert, D.J. Stelzner, and J.M. Hasenwinkel, “Mechanical characterization of the injured spinal cord after lateral spinal hemisection injury in the rat,” J Neurotrauma, 29(9):1747-57, 2012.

A.Y. Au, J.M. Hasenwinkel, and C.G. Frondoza, “Hepatoprotective effects of S-Adenosylmethionine and Silybin on canine hepatocytes in vitro,” J Anim Physiol Anim Nutr, Feb 9 2012, Epub ahead of print.

A.Y. Au, J.M. Hasenwinkel, and C.G. Frondoza, “Micropatterened agarose scaffolds covalently modified with collagen for culture of normal and neoplastic hepatocytes,” Journal of Biomedical Materials Research, Part A, 100(2):342-52, 2012

D.C. Rodrigues, R.A. Bader, J.M. Hasenwinkel, “ Grafting of nanospherical PMMA brushes on cross-linked PMMA nanospheres for addition in two-solution bone cements.” Polymer, 52(12):2505-13, 2011.

Riyad S. Aboutaha

Degrees:

  • Ph.D., Civil Engineering, 1994, University of Texas at Austin, Texas, USA.
  • M.S., Civil Engineering, 1990, University of Texas at Austin, Texas, USA.
  • B.E., Civil Engineering 1981, Beirut Arab University, Beirut, Lebanon.

Research interests:

  • Ductility of CFRP strengthened concrete bridge girders
  • Durability of wearing surfaces for FRP bridge decks
  • Seismic response of deteriorated concrete bridge components
  • Economy of preventive maintenance of highway bridges
  • GFRP reinforced concrete structures in corrosive environments
  • Smart reinforced concrete structures

Current Research:

Preventive maintenance is the most economical approach to maintain existing concrete bridges. Therefore, evaluation of existing bridges with intention of applying preventive maintenance should be based on chemical assessment of the bridge condition, not primarily based on physical assessment. An in-depth investigation of the combined deterioration effects of various deterioration mechanisms is needed to establish sound thresholds for harmful chemicals in concrete bridge elements. Such established thresholds are critical for cost-effective maintenance decision making, in a timely fashion, before any deterioration starts. This project takes a scientific-practical approach for preventive maintenance of concrete bridges.

Modern, low cost maintenance of concrete bridges using effective NDT test data. This project investigates the smart use of NDT data to predict the near future service condition of concrete bridge components, and its utilization for cost-effective preventive maintenance policy. The impact of this study will enhance the followings: (1) development of better rational for setting maintenance frequency based on condition, (2) development of preventive low-cost maintenance measures for better control of deterioration rate, (3) understanding of financial consequences of delayed maintenance, and (4) reduction of the number of structurally deficient bridges.

Courses Taught:

  • CEE 332 Design of Concrete Structures
  • CEE 478/678 Rehabilitation of Civil Infrastructure
  • CEE 536 Prestressed Concrete Design
  • CEE 635 Advanced Reinforced Concrete Design
  • CEE 677 Design of Structural Systems

Honors:

  • Fellow of the American Concrete Institute (ACI)

Selected Publications:

Bridge Pier Extension with Carbon-Fiber Reinforced Polymer Flexural Reinforcement: Experimental Tests and Three-Dimensional Finite Element Modeling, by Cheng Tan, Jia Xu, and Riyad Aboutaha, ACI Structural Journal, Vol. 118, No. 1, (2021) pp 251-262.

Cyclic Flexural Performance of Fire-Damaged Reinforced Concrete Beams Strengthened with Carbon Fiber- Reinforced Polymer Plates, by Akhrawat Lenwari, Chanachai Thongchom, and Riyad S. Aboutaha, ACI Structural Journal, Vol. 117, No. 6, (2020) pp. 133-146.

Xingji Lu, Riyad S. Aboutaha (2020), “Structural strengthening of square spread footings using circular external prestressing,”Journal of Building Engineering, Volume 31, September 2020.

Cheng Tana, Jia Xub and Riyad S. Aboutaha (2020), “Numerical analysis of RC hammer head pier cap beams,” Computers and Concrete, Vol. 25, No. 5.

Chanachai Thongchom, Akhrawat Lenwari, and Riyad S. Aboutaha (2019) “Effect of Sustained Service Loading on Post-Fire Flexural Response of Reinforced Concrete T-Beams,” ACI Structural Journal, Vol. 116, pp 243-254.

Jnaid, F., and Aboutaha, R. (2016) “Residual Flexural Strength of Corroded Reinforced Concrete Beams,” Elsevier, www.sciencedirect.com.

EI-Helou, R., and Aboutaha, R., “Analysis of Rectangular Hybrid Steel-GFRP Reinforced Concrete Beam Columns,” Computers and Concrete, Vol. 16, No. 2 (2015) pp. 245-260.

J. Cole Smith

Degrees:

  • PhD, Industrial and Systems Engineering, Virginia Tech, 2000
  • BS, Mathematical Sciences, Clemson University, 1996

Research interests:

  • Integer programming and combinatorial optimization
  • Network flows and facility location
  • Computational optimization methods
  • Large-scale optimization due to uncertainty or robustness considerations

Honors:

  • 2019 Member, Academy of Distinguished Alumni for the Grado Department of Industrial and Systems Engineering at Virginia Tech
  • 2018 Fellow, Institute of Industrial and Systems Engineers
  • 2014 Glover-Klingman Prize for Best Paper in Networks (Sullivan and Smith, 2014)
  • 2010 Hamed K. Eldin Outstanding Young Industrial Engineer in Education Award
  • 2009 IIE Operations Research Division Teaching Award
  • 2007 IIE Transactions Best Paper Award (Lim and Smith, 2007)
  • 2002 Young Investigator Award recipient (awarded by Office of Naval Research)

Selected Publications:

Lozano, L. and Smith, J.C., “A Binary Decision Diagram Based Algorithm for Solving a Class of Binary Two-Stage Stochastic Programs,” to appear in Mathematical Programming, 2019.

Curry, R.M. and Smith, J.C., “Models and Algorithms for Maximum Flow Problems Having Semicontinuous Path Flow Constraints,” IISE Transactions, 50(6), 484-498, 2018.

Lozano, L. and Smith, J.C., “A Value-Function-Based Exact Approach for the Bilevel Mixed-Integer Programming Problem,” Operations Research, 65(3), 768-786, 2017.

Sefair, J. and Smith, J.C., “Dynamic Shortest-Path Interdiction,” Networks, 68(4), 315-330, 2016.

Romich, A., Lan, G., and Smith, J.C., “Optimizing Placement of Stationary Monitors,” IIE Transactions, 47(6), 556-576, 2015.