Katie Cadwell

Education:

  • B.S. in Chemical Engineering, Missouri University of Science & Technology (formerly University of Missouri-Rolla)
  • Ph.D. in Chemical Engineering, Thesis Advisor: Nicholas L. Abbott, University of Wisconsin-Madison
  • Post-doctoral Research Associate in STEM Education and Outreach, Interdisciplinary Education Group, Materials Research Science and Engineering Center, University of Wisconsin-Madison
  • Chemistry Instructor, General Chemistry Coordinator, and Engineering Transfer Program Director, Madison Area Technical College

Lab/ Center/ Institute affiliation:

BioInspired Institute

Areas of Expertise:

  • Chemical Engineering Education
  • Faculty and Student Professional Development
  • Best Practices in Engineering Education

Honors and Awards:

  • AIChE Student Chapter Advisor Honor Roll, 2015-2021
  • 2015 Teaching Recognition Award from the Syracuse University Laura J. and L. Douglas Meredith Professorship Program
  • 2015 Syracuse University Chancellor’s Awards for Public Engagement and Scholarship: Inspiration Award
  • 2014 Syracuse University College of Engineering and Computer Science Dean’s Award for Excellence in Engineering Education
  • 2014 Technology Alliance of Central New York (TACNY) College Technology Educator of the Year

Selected Publications:

  • Blum, M.M., Cadwell, K.D., Hasenwinkel, J.M., “A Model for a Faculty Development Course Redesign Summer Working Group.” Proceedings of the American Society for Engineering Education 2020 Virtual Annual Conference and Exposition, 2020.
  • Cadwell, K.D., Blum M. M., Hasenwinkel, J.M., Stokes-Cawley, C. “A Gateway Course Redesign Working Group.” Proceedings of the American Society for Engineering Education 2018 Annual Conference and Exposition, Salt Lake City, UT, 2018.
  • Stokes-Cawley, C. and Cadwell, K.D. “Project ENGAGE: A Summer Immersion Experience in Engineering for Middle School Girls.” Proceedings of the American Society for Engineering Education St. Lawrence Section Regional Conference, Syracuse, NY, 2015. Reprinted in Transactions on Techniques in STEM Education, 2016, 1(2): 20-29.
  • Blum, M.M, Cadwell, K.D., Hasenwinkel, J.M. “A mechanics of materials outreach activity: Reconstructing the human body – biomaterials and biomimicry.” Proceedings of the American Society for Engineering Education 2015 Annual Conference and Exposition, Seattle, WA, 2015.
  • Walz, K.A., Britton, S., Crain, J., Cadwell, K., Hoffman, A., Morschauser, P. “Biodiesel synthesis, viscosity, and quality control for an introductory chemistry lab.” The Chemical Educator, 2014, 19: 342-346.
  • Hoffman, A., Britton, S., Cadwell, K.D., Walz, K.A. “An integrated approach to introducing biofuels, flash point, and vapor pressure concepts into an introductory college chemistry lab.” Journal of Chemical Education, 2011, 88(2): 197-200.

Tomislav Bujanovic

Degree(s):

  • Ph.D. in Electrical and Computer Engineering

Lab/Center Affiliation(s):

Smart Grid Lab

Smart Grid and Power Engineering Lab at Syracuse University has been developed to support teaching and research in contemporary Power Engineering.

  • Power Engineering Lab section has been designed for basic and advanced teaching and research in Power Electronics, Sensors & Measurements, Electromechanical Devices, including control systems, communication, and signal processing aspects. The advanced power electronics boards, supported by the real-time interfaces, are equipped for modern undergraduate and graduate level contemporary experimentation in power electronics and electromechanical devices.
  • Smart Grid Lab section enables continued development of a multidisciplinary research concept that includes advances in communication and control systems, cyber-security, privacy, and economics. This section consists of the setups for electrical transmission and distribution system, solar and wind energy integration, and synchrophasor measurement technology implementation.
  • Smart Home Lab section has been designed for building wired and wireless communication infrastructure and algorithm development for future smart home ideas. The lab is equipped with smart metering infrastructure, providing state-of-the-art environment to our researchers.
  • Distant learning concept implementation in Smart Grid Lab has been developed to enable the on-line lectures and student presentations, as well as the distant lab experiment demonstrations.

Research Interests:

  • Distributed generation integration and control in electric power microgrid
  • Dynamic optimization of microgrid operations and islanding capabilities
  • Microgrid secure communication and cybersecurity infrastructure
  • Singularity detection and classification and signal segmentation
  • Segmentation and motion estimation in time-varying images

Current Research:

  • Methodology for the development of sustainable microgrid infrastructure with distributed generation including difficult‑to‑predict renewable energy sources (survey of existing assets, economic feasibility study, technical feasibility study, microgrid design and pre‑deployment parameter validation, on‑site commissioning, post‑deployment metrics validation)
  • Microgrid stability and protection challenges (synchrophasor technology implementation for real time monitoring and control, protection schemes coordination with distributed generation, merging challenges of monitoring and protection infrastructure)
  • Sustainable microgrid operations by real time load scheduling optimization, using nonlinear and heuristic approaches
  • Microgrid cyber secure, distributed, and resilient communication architecture
  • Smart metering implementation for demand priority optimization and consumer’s cost reduction with energy availability and signal disaggregation constraints
  • Singularity detection and classification and signal segmentation in medical electroencephalography signals for real time epileptic seizure monitoring

Courses Taught:

Power engineering basic and advanced courses in:

  • Power electronics
  • Electromechanical devices
  • Sensors & measurements
  • Electric power systems
  • Distributed generation integration in smart grid
  • Advanced measurements in power engineering
  • Microprocessor based power system protection
  • Control of distributed generation

Signal processing and applied mathematics basic and advanced courses in:

  • Signals & systems
  • Digital signal processing
  • Functional methods and linear analysis
  • Spectral analysis and adaptive filtering
  • Wavelets

Supporting teaching courses in:

  • Introduction to Electrical Engineering
  • Introduction to Smart Grid
  • Smart grid: Security, Privacy, & Economy

Professional activities:

  • American Society for Engineering Education, St Lawrence Section Conference Co‑Chair, Syracuse, April 17‑18, 2015
  • American Society for Engineering Education, St Lawrence Section Chair, 2015

Skills:

  • Six-sigma green belt, SUNY-ESF, Syracuse, NY, 2012
  • Anti-explosion defense of electrical appliances on over-ground places imperiled from explosive blends, Institute for Nuclear Sciences “Vinca”, Belgrade, Serbia, Yugoslavia, 1995
  • Specialist’s examination certificate (the specialist’s examination for engineers dealing with construction projects), Chamber of the Economy of Serbia, Belgrade, Yugoslavia, 1993 (Serbian/Yugoslavian equivalent to Professional Engineer in the USA)

Publications & Presentations:

Arnav Kavadia et al., The Smart Grid: Operational, Privacy, Security & Economic Issues, American Society for Engineering Education, St Lawrence Section Conference, Syracuse, NY, 2015

Tomislav Bujanovic & Prasanta Ghosh, Laboratory Experiments for Enhanced Learning of Electromechanical Devices, American Society for Engineering Education, Zone 1 Conference, Bridgeport, CT, 2014

Tomislav Bujanovic & Ikhlas Abdel-Qader, On Wavelet Transform General Modulus Maxima Metric for Singularity Classification in Mammograms, Open Journal of Medical Imaging, 2013, 3, 17-30

Tomislav Bujanovic et al., Development of Undergraduate Power Engineering Teaching and Learning for future Smart Grid, American Society for Engineering Education, St. Lawrence Section Conference, Buffalo, NY, 2013

Liwen Sun et al., Wavelet Application to Detect Spikes in EEG Signals Due to Epileptic Seizure, IEEE Signal Processing in Medicine and Biology Symposium, New York City, NY, 2012

Ed Bogucz

Degrees:

  • PhD, Mechanical Engineering, Lehigh University, 1985.
  • MSc, Heat Transfer Engineering, Imperial College, University of London, 1980.
  • BS, Mechanical Engineering, Lehigh University, 1978.

Lab/Center Affiliation(s):

  • Executive Director, Syracuse Center of Excellence

Research Interests:

  • Energy efficiency of building technologies
  • Green building design, construction, and operation
  • Indoor environmental quality
  • Revitalization and resilience of urban neighborhood
  • Collaborative research and development
  • Regional economic development

Current Research:

Bogucz is Principal Investigator or co-PI, or has served in these roles, for projects totaling more $60 million to date from sponsors including U.S. Environmental Protection Agency, U.S. Department of Energy, U.S. Economic Development Administration, NASA, National Science Foundation, NYSTAR, New York State Energy Research and Development Authority, Empire State Development, New York Power Authority, Carrier/United Technologies Corp., and National Grid.

Honors:

  • Leadership Award in the Non-Governmental Sector, awarded to SyracuseCoE by the U.S. Green Building Council in 2010.

Selected Publications:

Bogucz, E.A. “Driving innovations for data-driven built environments,” New York Academy of Sciences, May 30, 2012.

Hercules, J., Bogucz, E.A., Loomis, E., Queeley, D., “Show me the money: Advancing economic development goals with LEED-ND,” EcoDistricts Summit, Boston, Nov. 12, 2013.

Bogucz, E.A, Hollander, H., “The historical heritage of technology in Central New York,” John Edson Sweet Lecture, Technology Alliance of Central New York, Onondaga Community College, Dec. 10, 2013.

Bogucz, E.A., “Clean air for China, exported from New York: A case study in accelerating innovations for advanced buildings,” Advanced Energy 2014, Albany, NY, April 2014.

Bogucz, E.A., “Sustainable buildings—from local to global,” Syracuse University-Nanjing University 3rd Forum on Green Buildings and Urban Environments,” Syracuse, NY, Oct. 20, 2015.

Jesse Q. Bond

Degree(s):

  • B.S., Chemical Engineering, Louisiana State University, 2002
  • Ph.D., Chemical Engineering, University of Wisconsin, Madison, 2009

Research Interests:

  • Heterogeneous catalysis
  • Bio-based fuels and chemicals
  • Energy sustainability

Current Research:

Our group is focused on the design and application of catalytic materials for improving sustainability in the production of transportation fuels and chemical products. In our research, we leverage heterogeneous catalysis to facilitate the conversion of renewable feedstocks to drop-in replacements for traditional, petroleum-derived fuels. We approach this task mindful of the guiding principles of environmental stewardship and thus promote total biomass utilization, energy efficiency and conservation, and waste minimization as we strive to advance the state of the art in renewable energy.

Teaching Interests:

  • CEN 600: Heterogeneous catalysis
  • CEN 600: Biofuels
  • CEN 587: Chemical Reaction Engineering

Select Publications:

Wettstein, S.G., Bond, J.Q., Martin Alonso, D., Pham, H.N., Datye, A.K., Dumesic, J.A., “RuSn bimetallic catalysts for selective hydrogenation of levulinic acid to γ-valerolactone.” Applied Catalysis B: Environmental, 2012, 117–118. 321 – 329.

Martin Alonso, D., Wettstein, S.G., Bond. J.Q., Root, T.W., and Dumesic, J.A. “Production of Biofuels from Cellulose and Corn Stover using Alkylphenol Solvents,” ChemSusChem, 2011, 4, 8, 1078–1081.

Bond, J.Q., Wang, D., Martin Alonso, D., and Dumesic, J.A. “Interconversion Between g-valerolactone and Pentenoic Acid Combined with Decarboxylation to Form Butene Over Silica/Alumina.” Journal of Catalysis, 281, 2, 25, 2011, 290-299.

Martin Alonso, D., Bond, J.Q., Wang, D., and Dumesic, J.A., “Activation of Amberlyst-70 for Alkene Oligomerization in Hydrophobic Media.” Topics in Catalysis, 2011, 54, 5-7, 447 -457.

Bond, J.Q., Martin Alonso, D., West, R.M., Dumesic, J.A. “g-Valerolactone Ring-Opening and Decarboxylation over SiO2/Al¬2O3 in the Presence of Water.”Langmuir, 2010, 26, 21, 16291 – 16298.

Martin Alonso, D., Bond, J.Q., Dumesic, J.A. “Conversion of Biomass to Biofuels.”Green Chemistry, 2010, 12, 1493-1513.

Bond, J.Q., Martin Alonso, D., Wang, D., West, R.M., Dumesic, J.A. “Integrated Catalytic Conversion of g-Valerolactone to Liquid Alkenes for Transportation Fuels.” Science, 2010, 327, 5969, 1110-1114.

Michelle M. Blum

Degrees:

  • May 2012 Ph.D., Mechanical Engineering, University of Notre Dame, Notre Dame, IN
  • Jan. 2011 M.S., Mechanical Engineering, University of Notre Dame, Notre Dame, IN
  • May 2007 B.S., Mechanical Engineering, Rensselaer Polytechnic Institute, Troy, NY
  • May 2007 B.S., Physics, University of New York at Albany, Albany, NY

Areas of Expertise:

  • Engineering Education
  • Inquiry Based Learning Methods
  • Mechanical Characterization of Materials
  • Tribology & Lubrication

Dr. Blum is interested in research in improving undergraduate engineering education, including development of inquiry-based activities for first year engineering courses, improvement of student design projects, hands-on activities, professional skills development and inclusion and outreach activities. Her expertise includes developing inquiry-based educational materials that enables students to learn by actively engaging with course content, as well as creating streamlined materials for instructors. Dr. Blum also specializes in high performance materials development and characterization for tribological (friction and wear), structural, and biomedical applications.

Honors and Awards:

  • 2016 Syracuse University Laura J. and L. Douglas Meredith Professorship Teaching Award
  • 2017 TACNY College Educator of the Year
  • 2017 SU Dean’s Award for Excellence in Engineering Education
  • 2018 The Filtertech, Pi Tau Sigma, and Sigma Gamma Tau Award for Excellence in Education in Mechanical and Aerospace Engineering.
  • 2022 Award for Outstanding Assessment, Mechanical Engineering B.S. program, One University Assessment Awards.

Selected Publications:

  • Michelle M. Blum, An Inquiry-Based Introduction to Engineering, Published by Springer, 2022.
  • Dawn R. Johnson, Michelle M. Blum, Katharine E. Lewis, and Sharon W. Alestalo, Chapter Nineteen: Intersectionality as Praxis for Equity in STEM: A WiSE Women of Color Program, in Intersectionality & Higher Education: Theory, Research and Praxis, Second Edition, Published by Peter Lang, 2019.
  • K. Cadwell, M.M. Blum, C. Stokes-Cawley, J.M. Hasenwinkel, A Gateway Course Redesign Working Group Model, Proceedings of the American Society for Engineering Education 2018 Annual Conference and Exposition, Salt Lake City, UT.
  • Blum M.M., Dannenhoffer, J.F., 2017, Integrated Use of Programing in Machine Design Course, Proceedings of the American Society for Engineering Education 2017 Annual Conference and Exposition, Columbus, OH.
  • Blum, M.M, Cadwell, K.D., Hasenwinkel, J.M., 2015. A mechanics of materials outreach activity: Reconstructing the human body – biomaterials and biomimicry. Proceedings of the American Society for Engineering Education 2015 Annual Conference and Exposition, Seattle, WA.
  • Synthesis and Characterization of Zwitterionic Polymer Brush Functionalized Hydrogels with Ionic Responsive Coefficient of Friction. Allen O. Osaheni, Ariel Ash-Shakoor, Ivan Gitsov, Patrick T. Mather, and Michelle M. Blum, Langmuir 2020 36 (14), 3932-3940
  • Mechanics and Tribology of a Zwitterionic Polymer Blend: Impact of Molecular Weight, A.O. Osaheni, P.T. Mather, M.M. Blum, Materials Science & Engineering C (2020) (In press https://doi.org/10.1016/j.msec.2020.110736
  • The Use of a Hydrogel Implant in the Repair of Osteochondral Defects of the Knee: A Biomechanical Evaluation of Restoration of Native Contact Pressures in Cadaver Knee, R. Sismondo, F. Werner, N. Ordway, A.O. Osaheni, M.M Blum, . Scuderi, Clinical Biomechanics (2018) (in Press: https://doi.org/10.1016/j.clinbiomech.2019.04.016
  • Osaheni A.O., Finkelstein, E.B., Mather P.T., Blum M.M., Synthesis and Characterization of a Zwitterionic Hydrogel Blend with Low Coefficient of Friction. Acta Biomaterialia Volume 46, December 2016, Pages 245–255.

Jackie Anderson

Degrees:

  • Ph.D., Mechanical and Aerospace Engineering, Syracuse University
  • M.S., Mechanical Engineering, Rochester Institute of Technology
  • B.S., Mechanical Engineering, Rochester Institute of Technology

Teaching interests:

  • Engineering Management
  • Thermo/Fluids

Shobha K. Bhatia

Degree(s):

  • Ph.D., Civil Engineering, University of British Columbia, Vancouver, 1980.
  • M.S., Civil Engineering, IIT Roorkee, India, 1973.
  • Bachelor of Civil Engineering, IIT Roorkee, India, 1971.

Areas of Expertise:

  • Use of synthetics and natural products in mitigating soil erosion and soil
  • Dewatering and containment of dredged sediments and waste
  • Use of recycle materials in civil infrastructures
  • Women in science and engineering

Dr. Bhatia’s current research efforts focus on the testing, development, design, and innovative use of sustainable natural and polymeric materials for the protection of water quality. In the area of soil erosion, a significant issue that can negatively impact surface water quality, Dr. Bhatia has worked extensively to develop methods to reduce stream bank erosion, evaluate the properties and performance of erosion control products, and develop new, innovative products to minimize soil erosion. Using a multidisciplinary collaborative approach, Dr. Bhatia has worked closely with manufacturers, national and international agencies, and research centers in the development of sustainable solutions for soil erosion issues. Recently, Dr. Bhatia worked on a research project to assess stream restoration methods to reduce stream bank erosion in the Catskill Mountains. Dr. Bhatia has also performed research to evaluate the technical, political, and cultural aspects of the use of natural erosion control materials (coir and jute) in India and the United States. Dr. Bhatia has also established unique testing facilities at Syracuse University to test erosion control products.

Dr. Bhatia has also worked extensively on the development of sustainable materials and methods to dewater dredged sediment, a significant and urgent issue in the US and around the world. Dr. Bhatia is currently investigating the dewatering performance of twenty-five different dredged sediments from water bodies in the US using polymeric and natural flocculants and polymeric and natural fiber geotextiles. Bench-scale, pilot-scale, and large-scale tests will be conducted to evaluate the interaction between sediments, flocculants, and geotextiles. Unique testing facilities have been developed at Syracuse University to characterize the sediments and flocculants. A model will be developed incorporating the sediments, flocculants, geotextiles, and filter-cake characteristics to predict geotextile performance. The systematic study will explore the use of environmentally-friendly flocculants and geotextiles in dewatering and containing dredged sediments and also provide a framework for evaluating the effectiveness of chemically-conditioned sediment dewatering using geotextile tubes. The wealth of data that will be generated will allow for the thorough evaluation of existing test methods, the development of new test standards (in consultation with an industrial advisory board), and the creation of a model to verify results. Dr. Bhatia is also working extensively with industry and international researchers on the development of geotextile tubes for dewatering fly ash.

Dr. Bhatia has also been extensively involved in engineering education. She is co-director of the Women in Science and Engineering (WiSE) initiative at Syracuse University. She is a Co PI of the National Science Foundation funded project SUADVANCE.

Honors:

  • Recognized as GeoLegend, Geo Institute, American Society of Civil Engineering, January 2020.
  • Recipient of the Award of Appreciation from the ASTM in 2019 and 2014 for successfully completing more than ten studies and 31 one years of service to D 35 Committee.
  • Appointed to the National Committee on Geological and Geotechnical Engineering of the National Academy of Science-Engineering-Medicine, 2016-2018.
  • Woman in Engineering Proactive Network (WEPAN), 2015 University Agent Award, 2015.
  • Invited and participated in an educational workshop on multi-scale soil-environment problems, to explore key challenges for future geo-engineers at University of Cambridge, England. Funded by the National Science Foundation, September 2014.
  • Appointed member of the Diversity and Inclusion committee, Geo Institute, American Society of Civil Engineering, 2012 – 2015.
  • YWCA Syracuse and Onondaga County, Diversity Achievers Award, Syracuse, New York, 2012.
  • Chancellor’s Citations for Faculty Excellence and Scholarly Distinction, Syracuse University, February 2009
  • Recipient of the Excellence in Graduate Education Faculty Recognition Award, the Graduate School, Syracuse University, March 2008
  • Recipient of the Women of Influence Award – Division of Student Affairs, Office of Residence Life, Syracuse University, April 2007
  • Recipient of the College Technology Educator of the Year award from the Technology Alliance of Central New York for her pronounced and consistent role in the community – beyond “the hill” of Syracuse University, March, 2004
  • Recipient of the International Network for Engineering Education and Research (iNEER) Award for Excellence in Fostering Sustained and Unique Collaborations in International Research and Education, July, 2003
  • Recipient of 2000 Laura J. and L. Douglas Meredith Professor of Teaching Excellence, Syracuse University, 2000-2003

Select Publications:

Bhatia, S. K., Lebster, G., and Khachan, M. (2021). “Dewatering Contaminated Slurries Using Geotextile Tubes,” GEOSTRATA, American Society of Civil Engineering, March/April Issue, 2021.

Fatema, N., and Bhatia, S. K. (2020) “Role of Geotextile Pore Opening on the Dewatering Tests,” Geosynthetics International, September, https://doi.org/10.1680/jgein.20.00029.

Fatema, N., and Bhatia, S. K. (2019). “Comparisons between Geotextile Pore Sizes Obtained from Capillary Flow And Dry Sieving Tests, “Geotechnical Testing Journal , DOI: 10.1520/GTJ20180203.

Gallagher, P., Bhatia, S. K., Alestalo, S., Soundarajan, S., and Athanasopoulos-Zekkos, A. (2019) “Increasing Collaboration among Geotechnical Engineering Faculty: A Case Study from the “Geotechnical Engineering Women Faculty: Networked and Thriving Project,” ASCE, Geotechnical Special Publication, GSP 314 ed., pp. 86-98.

Duggan, K. L., Morris. M., Bhatia, S. K., and Lewis, K. E. (2019).  “Analyzing the Toxicity of Cationic Polyacrylamide and Cationic Starch on Aquatic Life,” Journal of Hazardous, Toxic, and Radioactive Waste, ASCE. Oct; 23(4): 10.1061/ HZ.2153-5515.0000467.

Fatema, N., and Bhatia, S. K. (2018). “Sediment Retention and Clogging of Geotextile with High Water Content Slurries,” International Journal of Geosynthetics and Ground Engineering, 4: 13. https://doi.org/10.1007/s40891-018-0131-0.

Ratnayesuraj C.R, Kiffle, Z.B., Bhatia, S.K., Lebster G. and Timpson, C. (2018).Tests and Analytical Model to Predict Geotextile Tube Performance in the Field: A Case  Study.  International Foundations Congress and Equipment Expo, March 5-10, 2018.

RatnaYesuraj, C.R. and Bhatia. S.K. (2018). Testing and Analytical Modeling of Two-dimensional Geotextile Tube Dewatering Process. Geosynthetics International, Volume 25, No. 2 April, pp.132-149.  https://doi.org/10.1680/jgein.17.00038

Fatema, N., and Bhatia, S. K. (2018). “Sediment Retention and Clogging of Geotextile with High Water Content Slurries,” International Journal of Geosynthetics and Ground Engineering, 4: 13. https://doi.org/10.1007/s40891-018-0131-0.

Khachan, M. M., and Bhatia, S. K. (2017). The Efficacy and Use of Small Centrifuge for Evaluating Geotextile   Tube Dewatering Performance. Geotextiles and Geomembranes45(4), 280-293.

Ben Akih-Kumgeh

Degree(s):

  • Ph.D., McGill University

Lab/Center Affiliation:

  • Center of Excellence

Research Interests:

  • Combustion physics and chemistry (chemical kinetics, ignition, flame propagation, extinction, and pollutant formation, turbulent combustion)
  • Applied combustion in gas turbines, internal combustion engines and process burners
  • Fuel technology (formulation, additives and characterization)
  • Thermodynamic analysis of energy systems

Current Research:

Our research interests are in the area of energy conversion, with a special focus on Combustion Physics and Chemistry. Our work is a combination of experiments, combustion theory, and simulations. We determine combustion properties and pollutant formation trends, contribute to detailed and reduced chemical kinetic model development, and use computational fluid dynamics to study turbulence-chemistry interactions in combustion processes.

The ultimate goal is to develop tools for the analysis and design of advanced combustion devices such as gas turbines, internal combustion engines and industrial furnaces. We are also actively involved unravelling the physics of laser-induced initiation of burning processes; an approach that is promising as an alternative reliable ignition source for fuel-flexible engines. Other areas of research include thermodynamic analysis of energy systems and characterization of fuel blends.

Courses Taught:

  • Thermodynamics
  • Advanced thermodynamics
  • Propulsion
  • Combustion phenomena in engineering
  • Selected topics in combustion turbines and internal combustion engines

Honors/Awards:

  • 2014 FilterTech, Pi Tau Sigma, and Sigma Gamma Tau faculty award for Excellence in Engineering Education
  • NSERC Postdoctoral Fellowship, Canada, 2012-2014, declined in favor of faculty position at Syracuse University
  • MITACS/CRIAQ/NSERC internships for doctoral & postdoctoral scholars, held at Rolls-Royce Canada, 2010-2011
  • FQRNT doctoral fellowship in energy research (Provincial fellowship, Quebec, Canada), 2009-2010
  • Sigma Xi Grant-in-Aid-of research, 2010

Selected Publications:

Propanol isomers: Investigation of ignition and pyrolysis time Scales (authors: S. Jouzdani, A. Zhou, Akih-Kumgeh), Combustion & Flame, 176:229-244 2016, 2017.

An experimental and chemical kinetic modeling study of dimethylcyclohexane oxidation and pyrolysis (authors: M.A. Eldeeb, S. Jouzdani, Z.Wang, M. Sarathy, Akih-Kumgeh), Energy & Fuels, 30:86488657, 2016.

Toward improved understanding of the physical meaning of entropy in classical thermodynamic (author: Akih-Kumgeh), Entropy, 18:270(16 pages), 2016.

Unsteady RANS and Scale Adaptive Simulations of Turbulent Spray Flames in a Swirled-Stabilized Gas Turbine Model Combustor using Tabulated Chemistry (authors: A. Fossi, A. deChamplain, and Akih-Kumgeh), Int. J. Numerical Methods for Heat and Fluid Flow, 25:1064–1088, 2015.

Comparative Analysis of Chemical Kinetic Models Using the Alternate Species Elimination Approach (authors: N.D. Peters, Akih-Kumgeh, J.M. Bergthorson), J. Eng. Gas Turbines & Power, 137:021505-1–021505-9, 2014.

Jeongmin Ahn

Degree(s):

  • Ph.D. in Aerospace Engineering, University of Southern California
  • M.S. in Aerospace Engineering, University of Michigan
  • B.S. in Mechanical Engineering, Rensselaer Polytechnic Institute

Lab/Center Affiliation:

  • Combustion and Energy Research Laboratory (COMER)

Areas of Expertise:

  • Energy conversion
  • Electrochemistry
  • Combustion
  • Thermal management

Professor Ahn’s research primarily concerns electrochemistry, combustion, power generation, propulsion and thermal management, with a recent emphasis on advanced energy conversion systems using solid oxide fuel cells (SOFCs). Prof. Ahn has performed an experimental investigation of catalytic and non-catalytic combustion in heat recirculating combustors, fuel cells: fabrication, test and characterization of all types of SOFCs (dual-chamber, single-chamber and no-chamber, which is also called as a flame-assisted fuel cell), micro heat engines, thermoacoustic engines, thermal transpiration based pumping/propulsion and power generation, all solid state batteries, bio/electro corrosion of implants, and bio based materials for energy applications. 

Honors and Awards:

  • 3rd place of the Poster Competition at Research Day, 2022
  • 1st place of the Health and Well-being and 2nd place of the Energy, Environment, and Smart Materials in the Presentation Awards, 2021
  • 2nd, and 3rd place of the Student Pitch Competition at Research Day, 2020
  • People’s Choice Award for Best Paper at the ASME 2020 Power Conference & Nuclear Engineering Conference, 2020
  • Best Paper Winner of the Student Paper Competition at the ASME 2018 Power and Energy Conference & Exhibition, 2018
  • 2nd place of the Mechanical and Aerospace Engineering Department Poster Contest, 2018
  • Recipient of Advisory Board Award, 1st place of the Mechanical and Aerospace Engineering Department Poster Contest, 2018
  • 1st place of the SyracuseCoE Symposium Poster Competition, 2017
  • Recipient of Advisory Board Award, 1st place of the Mechanical and Aerospace Engineering Department Poster Contest, 2017
  • 2nd place of the Student Pitch Competition at Research Day, 2017
  • 1st, and 2nd place of the SyracuseCoE Symposium Poster Competition, 2016
  • Best Prototype Winner of the Research Summit at the General Electric (GE) Global Research, 2016
  • 2nd place of the Mechanical and Aerospace Engineering Department Poster Contest, 2016
  • Practical Application Winner of the Nunan Lecture and Research Day Poster Competition, 2016
  • Recipient of ASME Fellowship, 2016
  • Recipient of the Sustainable Aviation Research Society Science Award, 2016
  • 1st, and 2nd place in the graduate student category at the CNY ASHRAE Poster Competition, 2016
  • Recipient of SyracuseCoE Faculty Fellowship, 2015
  • 1st place of the SyracuseCoE Symposium Poster Competition, 2015
  • Best Poster Winner of the Research Summit at the General Electric (GE) Global Research, 2015
  • 1st, 2nd, and 3rd place of the SyracuseCoE INSPIRE Competition, 2015
  • 2nd place of the Mechanical and Aerospace Engineering Department Poster Contest, 2015
  • High Impact Idea Award of the Earth Week Sustainability Research Poster Competition, 2015
  • 2nd place of the SyracuseCoE Symposium Poster Competition, 2014
  • Best Poster Winner of the Nunan Lecture and Research Day Poster Competition, 2014
  • ASEE Best Paper Award of the ASEE St. Lawrence Section, 2013
  • Recipient of the Ralph R. Teetor Educational Award, 2013
  • Named AIAA’s Spotlight Member of the Month, 2012
  • Recipient of AIAA Associate Fellowship, 2012
  • Recipient of Faculty Excellence Award, 2012
  • Grand Prize Winner of the Nunan Lecture and Research Day Poster Competition, 2011
  • Recipient of WSU MME Excellence in Teaching Award, 2008 – 2009
  • Awarded in WSU Faculty Excellence Recognition Program, 2008

Selected Publications:

  • Alexander R. Hartwell, Cole A. Wilhelm, Thomas S. Welles, Ryan J. Milcarek, and Jeongmin Ahn, “Effects of Synthesis Gas Concentration, Composition, and Operational Time on Tubular Solid Oxide Fuel Cell Performance”, Sustainability, Vol. 14, pp. 7983 (2022).
  • Thomas S. Welles, and Jeongmin Ahn, “Comparison of In Vitro Corrosion Products on CoCrMo generated via Oscillatory Electric Fields Before and After Removal of Proteinaceous Layer”, Materialia,Vol. 22, pp. 101400 (2022).
  • Brent B. Skabelund, Hisashi Nakamura, Takuya Tezuka, Kaoru Maruta, Jeongmin Ahn, and Ryan J. Milcarek, “Thermal Partial Oxidation of n-Butane in a Micro-Flow Reactor and Solid Oxide Fuel Cell Stability Assessment”, Energy Conversion & Management, Vol. 254, pp. 115222 (2022).
  • Thomas S. Welles, and Jeongmin Ahn, “Driving Electrochemical Corrosion of Implanted CoCrMo Metal via Oscillatory Electric Fields without Mechanical Wear”, Nature-Scientific Reports, Vol. 11, pp. 22366 (2021).
  • Alexander R. Hartwell, Thomas S. Welles, and Jeongmin Ahn, “The Anode Supported Internal Cathode Tubular Solid Oxide Fuel Cell: A Novel Cell Geometry for Combined Heat and Power Applications”, International Journal of Hydrogen Energy, Vol. 46, Issue 75, pp. 37429-37439 (2021).
  • Thomas S. Welles, and Jeongmin Ahn, “Investigation of the Effects of Electrochemical Reactions on Complex Metal Tribocorrosion within the Human Body”, Heliyon, Vol. 7, Issue 5, pp. e07023 (2021).
  • Thomas S. Welles, and Jeongmin Ahn, “Novel Investigation of Perovskite Membrane Based Electrochemical Nitric Oxide Control Phenomenon”, Nature-Scientific Reports, Vol. 10, Issue 1, pp. 18750 (2020).
  • Brent B. Skabelund, Hisashi Nakamura, Takuya Tezuka, Kaoru Maruta, Jeongmin Ahn, and Ryan J. Milcarek, “Impact of Low Concentration Hydrocarbons in Natural Gas on Thermal Partial Oxidation in a Micro-Flow Reactor for Solid Oxide Fuel Cell Applications”, Journal of Power Sources, Vol. 477, pp. 229007 (2020).
  • Ryan J. Milcarek, Vincent P. DeBiase, and Jeongmin Ahn, “Investigation of Startup, Performance and Cycling of a Residential Furnace Integrated with micro-Tubular Flame-assisted Fuel Cells for Micro-Combined Heat and Power”, Energy, Vol. 196, pp. 117148 (2020).
  • Ryan J. Milcarek, Hisashi Nakamura, Takuya Tezuka, Kaoru Maruta, and Jeongmin Ahn, “Investigation of Microcombustion Reforming of Ethane/Air and Micro-Tubular Solid Oxide Fuel Cells”, Journal of Power Sources, Vol. 450, Issue 29, pp. 227606 (2020).

Wenliang (Kevin) Du

Degree(s):

  • Ph.D. 2001, from Purdue University

Research Interests:

  • Computer and network security
  • Smartphone and mobile system security
  • Security education

Current Research:

Recent work has involved the studies of the Android operating systems with the following goals: (1) identify security problems in the design of the Android operating system, (2) identify security problems in mobile apps and develop tools to detect them, (3) develop improved access control for mobile systems.

Other current work includes the development of effective hands-on lab exercises for security education. We started the work in 2002, and we have developed about 30 labs for both undergraduate and graduate students. As of September 2015, over 350 universities and colleges worldwide are using them.

Courses Taught:

  • Computer security
  • Internet security
  • Android security
  • Android Programming

Honors:

  • IEEE Fellow
  • 2014 Dean’s Award for Excellence in Engineering Education, May 2014.
  • 2013 Faculty Excellence Award from College of Engineering and Computer Science.
  • 2013 ACM CCS Test-of-Time Award.
  • Best Paper Award in the 11th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), May 22-25, 2007, Nanjing, China.
  • Best Paper Award in The 19th IEEE International Parallel & Distributed Processing Symposium (IPDPS), April 4-8, 2005, Denver, Colorado.
  • Guo Mo-ruo Award (1992), University of Science & Technology of China.

Selected Publications:

Click here to see full list of publications.

Yousra Aafer, Nan Zhang, Zhongwen Zhang, Xiao Zhang, Kai Chen, XiaoFeng Wang, Xiaoyong Zhou, Wenliang Du, and Michael Grace. Hare Hunting in the Wild Android: A Study on the Threat of Hanging Attribute References. To appear in the 22nd ACM Conference on Computer and Communications Security (CCS), Denver, Colorado, USA. October 12-16, 2015.

Xing Jin, Xunchao Hu, Kailiang Ying, Wenliang Du, Heng Yin and Gautam Nagesh Peri. Code Injection Attacks on HTML5-based Mobile Apps: Characterization, Detection and Mitigation. In Proceedings of the 21st ACM Conference on Computer and Communications Security (CCS), Scottsdale, Arizona, USA. November 3 – 7, 2014.

Paul Ratazzi, Ashok Bommisetti, Nian Ji, and Wenliang Du. PINPOINT: Efficient and Effective Resource Isolation for Mobile Security and Privacy. In Proceedings of the Mobile Security Technologies (MoST) workshop, May 21, 2015.

Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin. Attacks on WebView in the Android System. In Proceedings of the 27th Annual Computer Security Applications Conference (ACSAC), Orlando, Florida, USA. December 5-9, 2011.

Karthick Jayaraman, Wenliang Du, Balamurugan Rajagopalan, and Steve J. Chapin. Escudo: A Fine-grained Protection Model for Web Browsers. In ICDCS: The 30th International Conference on Distributed Computing Systems, Genoa, Italy, June 21-25, 2010

Wenliang Du. The SEED Project: Providing Hands-on Lab Exercises for Computer Security Education. In IEEE Security and Privacy Magazine, September/October, 2

Julie M. Hasenwinkel

Degree(s):

  • PhD, Biomedical Engineering, Northwestern University
  • MS, Bioengineering, Clemson University
  • BSE, Biomedical Engineering, Duke University

Lab/Center Affiliation(s):

  • BioInspired Institute

Areas of Expertise:

  • Faculty development in teaching and learning
  • Engineering education and active learning pedagogies
  • Student success initiatives
  • Orthopedic Biomaterials
  • Biomaterials for Nerve Regeneration

My research originally focused on translational polymeric biomaterials for orthopedics and nerve regeneration applications.  We worked on the design, synthesis, characterization, in vitro and in vivo evaluation of acrylic bone cements, nanoparticle drug delivery systems to treat spinal cord injury, and micropatterned and mechanically-active hydrogels.  We also developed new techniques for studying spinal cord injury in vivo and in vitro.  Since 2012, my research program has gradually transitioned to a focus on engineering education, faculty development, and student success.  I have studied the impact of faculty-student interactions and peer interactions on student persistence towards a bachelor’s degree in Engineering and Computer Science.  Specifically, I investigate the link between faculty development in innovative pedagogy and advising practices, with implementation in Engineering and Computer Science courses and academic advising, and subsequent effects on student attitudes towards persistence and retention rates. I have also developed several cohort-based scholarship programs to support student success.

Honors and Awards:

  • Laura J. and L. Douglas Meredith Professor for Teaching Excellence 2022
  • Faculty Excellence Award, College of Engineering and Computer Science 2013
  • Executive Leadership in Academic Technology and Engineering (ELATE) Fellow 2013-2014
  • Wallace H. Coulter Foundation Early Career Translational Research Award, Phases I & II 2007-11
  • Judith Greenberg Seinfeld Distinguished Faculty Fellow, Syracuse University 2006-07
  • Teaching Recognition Award, Syracuse University 2004
  • James D. Watson Investigator Award, New York State Office of Science, Technology, and Academic Research (NYSTAR) 2003

Select Publications:

  • A.Y. Au, J.M. Hasenwinkel, and C.G. Frondoza, “Hepatocytes cultured on collagen modified micropatterned agarose for evaluating inflammatory and oxidative stress responses,” Applied In Vitro Toxicity, 7(1): 4-13, 2021.  https://doi.org/10.1089/aivt.2020.0015
  • P. Kunwar, A. Jannini, Z. Xiong, M.J. Ransbottom, J.S. Perkins, J.H. Henderson, J.M. Hasenwinkel, and P. Soman, “High-resolution 3D printing of stretchable hydrogel strutures using optical projection lithography,” ACS Applied Materials & Interfaces, 12(1):1640-1649, 2020.  https://doi.org/10.1021/acsami.9b19431
  • S. Fillioe, K. Bishop, A. Jannini, J. Kim, R. McDonough, S. Ortiz, J. Goodisman, J.M. Hasenwinkel, C. Peterson, and J. Chaiken, “In vivo, noncontact, real-time, PF[O]H imaging of the immediate local physiological response to spinal cord injury in a rat model,” Journal of Biomedical Optics, 25(3), 2019. https://doi.org/10.1117/1.JBO.25.3.032007
  • M.J. Wiegand, K. Faraci, B.E. Reed, and J.M. Hasenwinkel, “Enhancing mechanical properties of an injectable two-solution acrylic bone cement using a difunctional crosslinker,” Journal of Biomedical Materials Research, Part B: Applied Biomaterials, 107B:783-790, 2019. http://dx.doi.org/10.1002/jbm.b.34172

Riyad S. Aboutaha

Degrees:

  • Ph.D., Civil Engineering, 1994, University of Texas at Austin, Texas, USA.
  • M.S., Civil Engineering, 1990, University of Texas at Austin, Texas, USA.
  • B.E., Civil Engineering 1981, Beirut Arab University, Beirut, Lebanon.

Areas of Expertise:

  • Forensic Engineering and Structural Failures
  • Structural Assessment and Rehabilitation
  • Bridge Rehabilitation with CFRP Composites
  • Economy of Preventive Maintenance
  • Deterioration of Existing Structures

Dr. Riyad Aboutaha, is an associate professor of structural engineering in the Department of Civil and Environmental Engineering at Syracuse University.  He is a Fellow of the American Concrete Institute (ACI). Dr. Aboutaha has over 40 years of construction and research experience.  In the last 32 years, he has been researching the use of new materials for renewal of civil infrastructure.  Dr. Aboutaha has offered numerous seminars and workshops on evaluation and rehabilitation of concrete bridges with CFRP composites, including some for the U.S.A.  Federal Highway Administration (FHWA), and the New York State Department of Transportation (NYSDOT).  In addition, he completed major research projects on the GFRP bar ComBAR for Schöck Bauteile GmbH of Baden-Baden, Germany, on the durability of wearing surfaces for FRP bridge decks, for NYSDOT, and most recently bridge widening using CFRP composites for Shandong DOT, China.  Prof. Aboutaha’s current research interests are in the area of economy of preventive maintenance of concrete bridges, investigation of structural failures, and alteration of structural systems using CFRP composites.

Honors:

  • Fellow of the American Concrete Institute (ACI)

Selected Publications:

  • Bridge Pier Extension with Carbon-Fiber Reinforced Polymer Flexural Reinforcement: Experimental Tests and Three-Dimensional Finite Element Modeling, by Cheng Tan, Jia Xu, and Riyad Aboutaha, ACI Structural Journal, Vol. 118, No. 1, (2021) pp 251-262.
  • Cyclic Flexural Performance of Fire-Damaged Reinforced Concrete Beams Strengthened with Carbon Fiber- Reinforced Polymer Plates, by Akhrawat Lenwari, Chanachai Thongchom, and Riyad S. Aboutaha, ACI Structural Journal, Vol. 117, No. 6, (2020) pp. 133-146.
  • Xingji Lu, Riyad S. Aboutaha (2020), “Structural strengthening of square spread footings using circular external prestressing,”Journal of Building Engineering, Volume 31, September 2020.
  • Cheng Tana, Jia Xub and Riyad S. Aboutaha (2020), “Numerical analysis of RC hammer head pier cap beams,” Computers and Concrete, Vol. 25, No. 5.
  • Chanachai Thongchom, Akhrawat Lenwari, and Riyad S. Aboutaha (2019) “Effect of Sustained Service Loading on Post-Fire Flexural Response of Reinforced Concrete T-Beams,” ACI Structural Journal, Vol. 116, pp 243-254.
  • Jnaid, F., and Aboutaha, R. (2016) “Residual Flexural Strength of Corroded Reinforced Concrete Beams,” Elsevier, www.sciencedirect.com.
  • EI-Helou, R., and Aboutaha, R., “Analysis of Rectangular Hybrid Steel-GFRP Reinforced Concrete Beam Columns,” Computers and Concrete, Vol. 16, No. 2 (2015) pp. 245-260.

J. Cole Smith

Degrees:

  • PhD, Industrial and Systems Engineering, Virginia Tech, 2000
  • BS, Mathematical Sciences, Clemson University, 1996

Areas of Expertise:

  • Integer programming and combinatorial optimization
  • Network flows and facility location
  • Computational optimization methods
  • Large-scale optimization due to uncertainty or robustness considerations

My research interests lie in the field of mathematical optimization, especially in mixed-integer programming and combinatorial optimization. Much of my research has recently focused on network interdiction and fortification, along with bilevel mixed-integer optimization problems. I am particularly interested in interdiction problems that involve uncertain data, and/or in which there is an asymmetry of information among the players. My research has applications in areas including logistics, national security, healthcare, production, ecology, and sports. This research has recently appeared in journals such as Operations Research, Mathematical Programming, IISE Transactions, Networks, and INFORMS Journal on Computing, and has been supported by agencies including the National Science Foundation, the Office of Naval Research, the Air Force Office of Scientific Research, the Defense Threat Reduction Agency, and the Defense Advanced Research Projects Agency.

Honors:

  • 2019 Member, Academy of Distinguished Alumni for the Grado Department of Industrial and Systems Engineering at Virginia Tech
  • 2018 Fellow, Institute of Industrial and Systems Engineers
  • 2014 Glover-Klingman Prize for Best Paper in Networks (Sullivan and Smith, 2014)
  • 2010 Hamed K. Eldin Outstanding Young Industrial Engineer in Education Award
  • 2009 IIE Operations Research Division Teaching Award
  • 2007 IIE Transactions Best Paper Award (Lim and Smith, 2007)

Selected Publications:

* Lozano, L., Bergman, D., and Smith, J.C., “On the Consistent Path Problem,” Operations Research 68(6), 1913-1931, 2020.

* Holzmann, T. and Smith, J.C., “The Shortest Path Interdiction Problem with Randomized Interdiction Strategies: Complexity and Algorithms,” Operations Research, 69(1), 82-99, 2021.

* Nguyen, D. and Smith, J.C., “Network Interdiction with Asymmetric Cost Uncertainty,” European Journal of Operational Research, 297(1), 239-251, 2022.

* Lozano, L. and Smith, J.C., “A Binary Decision Diagram Based Algorithm for Solving a Class of Integer Two-Stage Stochastic Programs,” Mathematical Programming, 191(1), 381-404, 2022.

* Curry, R.M. and Smith, J.C., “Minimum-cost Flow Problems Having Arc-activation Costs,” Naval Research Logistics, 69(2), 320-335, 2022.