Biomedical and Chemical Engineering Professor Mary Beth Monroe Receives Young Investigator Award from the Society for Biomaterials

Assistant professor in biomedical and chemical engineering Mary Beth Monroe has received the Young Investigator Award from the Society For Biomaterials. This award recognizes an individual who has demonstrated outstanding achievements in biomaterials research. 

The Society For Biomaterials is a group of multidisciplinary professionals from various fields including academia, healthcare, government, and business. They aim to advance biomaterial science and education to improve professional standards for human health while promoting excellence in biomaterial science, engineering, and technology. 

Monroe’s research is focused on engineering new biomaterials to address clinical needs in wound healing. Seeking to make significant strides in polymer chemistry to facilitate safer, more efficient medical devices, her biomaterials lab conducts basic and applied research to produce and analyze polymeric biomaterials that enhance healing outcomes.

“Dr. Monroe is off to a fantastic start as a junior faculty member, and she brings tremendous creativity, energy, and enthusiasm to her research lab, teaching, mentorship activities, and service efforts. We expect her to continue to lead in these areas and to excel as a biomaterials scholar as she inspires those around her to lead as well,” says the SFB BioInterfaces Special Interest Group Awards Committee, Ashley Brown, Benjamin Keselowsky, and Christopher Siedlecki.  

“I have been engaged with SFB since my first semester of graduate school,” says Monroe. “It is a huge honor to be recognized by this scientific society that has had such a huge impact on my career by providing me with mentors, collaborators, and an outlet for scientific inquiry over the past 10+ years.” 

Mary Beth Monroe and Students in the Laboratory

Yaoying Wu

Lab/ Center/ Institute affiliation –

Bioinspired Institute

Areas of Expertise:

  • Synthetic Biomaterials
  • Peptide Assembly
  • Vaccine Design
  • Immunoengineering

The immune system is essential for many aspects of human health, such as, infections, autoimmune conditions, malignancies, and tissue regenerations. While the generations of immune responses are complicated processes that involves wide range of molecular and cellular interactions, many key aspects crucial for protective immune responses have been recently revealed, generating enormous opportunities for therapeutic interventions to greatly improve patient health. Various immune engineering strategies based on biomaterial platforms have shown promise in facilitating immunogenic materials trafficking, modulating cellular interactions, and more. My previous work has also demonstrated several approaches to engineer coordinated cellular and humoral immune responses for augmenting therapeutic responses. The research of our team at Syracuse is aimed at designing biomaterials strategies to delivering molecular stimuli in a temporal and spatial fashion for regulating immune functions. We are particularly interested in harnessing humoral immune responses for therapeutic purpose by regulating the cellular process involved.

Honors and Awards:

  • Duke Incubation Fund (Co-PI) 2019
  • American Chemical Society Excellence in Graduate Polymer Research Award 2014

Selected Publications:

•             Wu Y, Wen H, Bernstein Z, Blakney T, Congdon K, Sampson JH, Sanchez-Perez L, Collier JH, Multi-epitope supramolecular peptide nanofibers eliciting coordinated humoral and cellular antitumor immune responses, Science Advances, 2022 8, eabm7833

•             Wu Y, Kelly SH, Sanchez-Perez L, Sampson JH, Collier JH, Comparative study of α-helical and β-sheet self-assembled peptide nanofiber vaccine platforms: Influence of integrated T-cell epitopes, Biomaterial Science, 2020, 8, 3522

•             Fries CN, Wu Y, Kelly SH, Wolf M, Votaw NL, Zauscher S, Collier JH, Controlled lengthwise assembly of helical peptide nanofibers to modulate CD8+ T cell responses, Advanced Materials, 2020, 32, 2003310

•             Kelly SH, Wu Y, Varadhan AK, Curvino EJ, Chong AS, Collier JH, Enabling Sublingual Peptide Immunization Using Molecular Self-assemblies, Biomaterials, 2020, 241, 119903

•             Nelson CE, Wu Y, Gemberling MP, Oliver ML, Waller MA, Bohning JD, Robinson-Hamm JN, Bulaklak K, Castellanos Rivera RM, Collier JH, Asokan A, Gersbach CA, Long-term Evaluation of AAV-CRISPR Genome Editing for Duchenne Muscular Dystrophy, Nature Medicine, 2019, 25, 427

•             Wu Y, Norberg PK, Reap EA, Congdon K, Fries C, Kelly SH, Sampson JH, Conticello VP, Collier JH, A supramolecular vaccine platform based on α-helical peptide nanofibers, ACS Biomaterials Science & Engineering, 2017, 3(12), 3128

•             Wu Y, Smith AE, Reineke TM, Lipophilic polycation vehicles display high plasmid DNA delivery to multiple cell types, Bioconjugate Chemistry, 2017, 28, 2035

Yi Zheng

Lab/ Center/ Institute affiliations:

BioInspired Institute

Areas of Expertise:

  • Stem cell-based human developmental models
  • Microengineered organ/disease models (organoids)
  • Single cell genomics
  • Microfluidics
  • Mechanobiology

Embryonic development involves extensive lineage diversification, cell fate specification, tissue patterning and morphogenesis. Identification of the features that enable robust interpretation of developmental signaling using in vivo samples is a significant challenge. Recent studies of self-assembly processes of organ-like structures (organoids) from pluripotent stem cells in vitro have provided fresh insights into fundamental mechanisms underlying embryonic development. These stem cell-based in vitro models offer unparalleled opportunities for experimental control of key parameters, quantitative measurements, and mathematical modeling.

My lab sought to leverage sophisticated engineering approaches to achieve controllable in vitro platforms that could recapitulate sequential developmental events during human embryo development. These stem cell-based models will provide powerful experimental platforms to advance understanding of poorly understood embryonic disorders. With superior controllability and scalability, these platforms will also serve as effective tools for high-throughput drug and toxicity screening to facilitate diagnosis, prevention, and treatment of teratogenesis and birth defects.

Honors and Awards:

  • Robert M. Caddell Memorial Award, University of Michigan
  • Natural Sciences and Engineering Research Council of Canada (NSERC) Postdoctoral Fellowship
  • Natural Sciences and Engineering Research Council of Canada (NSERC) CREATE Scholarships, University of Toronto
  • Barbara and Frank Milligan Fellowships, University of Toronto

Selected Publications:

  • Zheng Y, Yan RZ, Kobayashi M, Xiang L, Yang R, Goedel A, Kang Y, Xue X, Esfahani SN, Liu Y, Resto Irizarry AM, Wu W, Li Y, Ji W, Niu Y, Chien KR, Li T, Shioda T, Fu J. Single-cell analysis of embryoids reveals lineage diversification roadmaps of early human development. Cell Stem Cell. 2022. In Press
  • Zheng Y, Xue X, Shao Y, Wang S, Esfahani SN, Li Z, Muncie JM, Lakins JN, Weaver VM, Gumucio DL, Fu J. Controlled modelling of human epiblast and amnion development using stem cells. Nature. 2019;573(7774):421-5.
  • Zheng Y, Sun Y, Yu X, Shao Y, Zhang P, Dai G, Fu J. Angiogenesis in Liquid Tumors: An In Vitro Assay for Leukemic-Cell-Induced Bone Marrow Angiogenesis. Advanced Healthcare Materials. 2016;5(9):1014-24.
  • Zheng Y, Chen J, Cui T, Shehata N, Wang C, Sun Y. Characterization of red blood cell deformability change during blood storage. Lab on a Chip. 2014;14(3):577-83.
  • Zheng Y, Shojaei-Baghini E, Wang C, Sun Y. Microfluidic characterization of specific membrane capacitance and cytoplasm conductivity of single cells. Biosensors and Bioelectronics. 2013;42:496-502.

Senem Velipasalar

Degrees:

  • Ph. D., Electrical Engineering, Princeton University, Princeton, NJ, 2007
  • M.A., Electrical Engineering, Princeton University, Princeton, NJ, 2004
  • M.S., Electrical Sciences and Computer Engineering, Brown University, Providence, RI, 2001
  • B.S., Electrical and Electronics Engineering, Bogazici University, Istanbul, Turkey, 1999

Lab/ Center/ Institute affiliations:

Director of the Smart Vision Systems Laboratory (http://www.vision.syr.edu/)

Faculty Affiliate, Aging Studies Institute

Areas of Expertise:

  • Machine Learning
  • Computer Vision
  • Wireless Smart Camera Networks
  • Mobile camera applications
  • Signal Processing

Prof. Velipasalar’s primary areas of research are machine learning and computer vision. More specifically, her research has focused on human activity classification and fall detection from egocentric cameras, and applications of machine learning to (i) thermal anomaly detection from UAV-mounted infrared cameras, (ii) driver behavior analysis from in-vehicle mounted cameras, (iii) 3D object detection, (iv) person detection from video data, (v) analysis of functional near infrared spectroscopy (fNIRS) data, (vi) dynamic multi-channel access, and (vii) defense against adversarial jamming attacks.

Honors/Awards:

  • NSF CAREER Award, 2011.
  • 2021 IEEE Region 1 Technological Innovation (Academic) Award.
  • 2021 IAAI Deployed Application Award for our paper titled “Preclinical Stage Alzheimer’s Disease Detection Using Magnetic Resonance Image Scans”.
  • Top 25 most downloaded IEEE Sensors Journal paper in the months of January-September 2017, and June 2018.
  • Graduate School All-University Doctoral Prize, received by my former Ph.D. student Burak Kakillioglu, 2022.
  • Graduate School All-University Doctoral Prize, received by my former Ph.D. student Natalie Sommer, 2021.
  • Graduate School All-University Doctoral Prize, received by my former Ph.D. student Yantao Lu, 2020.
  • 2017 IEEE Green Communications & Computing Technical Committee Best Journal Paper Award for our paper titled “Analysis of Energy Efficiency in Fading Channels under QoS Constraints”.
  • 2nd place Poster Award at the 17th Annual SyracuseCoE Symposium Student Poster Competition for our work titled “Heat Mapping Drones”, October 2017.
  • 2014 Excellence in Graduate Education Faculty Recognition Award.
  • Graduate School All University Doctoral Prize, received by my former Ph.D. student Akhan Almagambetov, 2014.
  • Nunan Research Day Poster Competition EECS Departmental Winner Award, received by Danushka Bandara (co-advised by Dr.Hirshfield), 2014.
  • Intelligent Transportation Society (ITS) of NY Best ITS Student Essay Award, received by my former Ph.D. student Akhan Almagambetov, based on our research on vehicle taillight tracking and alert signal detection, May 2013.
  • The college-wide award for “Applicability of Research to Business and Industry”, received by my former Ph.D. student Akhan Almagambetov, Nunan Lecture and Research Day, April 2013.
  • Third place paper award at the ACM/IEEE International Conference on Distributed Smart Cameras for the paper titled “Energy-efficient Feedback Tracking on Embedded Smart Cameras by Hardware-level Optimization“, 2011
  • EPSCoR First Award, 2009
  • Layman Award as PI, 2007
  • Layman Award as Co-PI, 2009
  • Best Student Paper Award at the IEEE International Conference on Multimedia & Expo (ICME) for the paper titled “Design and Verification of Communication Protocols for Peer-to-Peer Multimedia Systems,” 2006
  • IBM Patent Application Award, 2005
  • Travel Grant, Office of Graduate Affairs, Princeton University, 2005
  • Graduate Fellowship, Princeton University, 2002
  • Graduate Fellowship, Brown University, 1999

Selected Publications:

(Please visit https://ecs.syr.edu/faculty/velipasalar/ for a complete list)

  • J. Chen, B. Kakillioglu and S. Velipasalar, “Background-Aware 3D Point Cloud Segmentation with Dynamic Point Feature Aggregation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, April 2022.
  • F. Altay and S. Velipasalar, “The Use of Thermal Cameras for Pedestrian Detection,” IEEE Sensors Journal, vol. 22, issue:12, 11489 – 11498, May 2022.
  • Y. Chu, D. Mitra, K. Cetin, N. Lajnef, F. Altay, S. Velipasalar, “Development and Testing of a Performance Evaluation Methodology to Assess the Reliability of Occupancy Sensor Systems in Residential Buildings,” Energy and Buildings, vol. 268, pp. 112148, 2022.
  • J. Wang, T. Grant, S. Velipasalar, B. Geng and L. Hirshfield, “Taking a Deeper Look at the Brain: Predicting Visual Perceptual and Working Memory Load from High-Density fNIRS Data,” IEEE Journal of Biomedical and Health Informatics, vol. 26, issue:5, pp. 2308-2319, December 2021.
  • J. Wang, W. Chai, A. Venkatachalapathy, K. L. Tan, A. Haghighat, S. Velipasalar, Y. Adu-Gyamfi, A. Sharma, “A Survey on Driver Behavior Analysis from In-Vehicle Cameras,” accepted to appear in the IEEE Transactions on Intelligent Transportation Systems, early access version available, November 2021.
  • F. Wang; C. Zhong, M. Cenk Gursoy, S. Velipasalar, “Resilient Dynamic Channel Access via Robust Deep Reinforcement Learning,” IEEE Access Journal, vol. 9 , pp. 163188 – 163203, December 2021.
  • N. M. Sommer, B. Kakillioglu, T. Grant, S. Velipasalar and L. Hirshfield, “Classification of fNIRS Finger Tapping Data with Multi-Labeling and Deep Learning,” IEEE Sensors Journal, vol. 21, issue: 21, pp. 24558-24559, doi: 10.1109/JSEN.2021.3115405, Nov. 2021.
  • Y. Zheng, Y. Lu, and S. Velipasalar, “An Effective Adversarial Attack on Person Re-identification in Video Surveillance via Dispersion Reduction,” IEEE Access Journal, vol. 8, pp. 183891 – 183902, Sept. 2020.
  • N. Sommer, S. Velipasalar, L. Hirshfield, Y. Lu and B. Kakillioglu, “Simultaneous and Spatiotemporal Detection of Different Levels of Activity in Multidimensional Data,” IEEE Access Journal, vol. 8, pp. 118205 – 118218, June 2020.
  • D. Bandara, T. Grant, L. Hirshfield and S. Velipasalar, “Identification of Potential Task Shedding Events Using Brain Activity Data,” Augmented Human Research, 5. 10.1007/s41133-020-00034-y, 2020.
  • M. Cornacchia and S. Velipasalar, “Autonomous Selective Parts-Based Tracking,” IEEE Transactions on Image Processing, vol. 29, pp. 4349-4361, January 2020.
  • B. Kakillioglu, A. Ren, Y. Wang and S. Velipasalar, “3D Capsule Networks for Object Classification with Weight Pruning,” IEEE Access Journal, pp. 27393-27405, Febr. 2020.
  • C. Zhong, M. Cenk Gursoy and S. Velipasalar, “Deep Reinforcement Learning-Based Edge Cashing in Wireless Networks,” IEEE Transactions on Cognitive Communications and Networking, vol. 6 , issue 1, pp. 48-61, March 2020.
  • Y. Hu, Y. Li, M. C. Gursoy, S. Velipasalar, and A. Schmeink, “Throughput Analysis of Low-Latency IoT Systems with QoS Constraints and Finite Blocklength Codes,” IEEE Transactions on Vehicular Technology, vol. 69, issue 3, pp. 3093-3104, March 2020.
  • C. Zhong, Z. Lu, M. Cenk Gursoy and S. Velipasalar, “A Deep Actor-Critic Reinforcement Learning Framework for Dynamic Multichannel Access,” IEEE Transactions on Cognitive Communications and Networking, vol. 5, issue 4, pp. 1125-1139, Dec. 2019.
  • Y. Lu and S. Velipasalar, “Autonomous Human Activity Classification from Wearable Multi-Modal Sensors,” IEEE Sensors Journal, vol. 19, issue: 23, pp. 11403-11412, Dec. 2019.
  • D. Qiao, M. Cenk Gursoy and S. Velipasalar, “Throughput-Delay Tradeoffs with Finite Blocklength Coding over Multiple Coherence Blocks,” IEEE Transactions on Communications, pp. 5892 – 5904, volume: 67 , Issue: 8 , Aug. 2019.
  • D. Bandara, L. Hirshfield and S. Velipasalar, “Classification of Affect Using Deep Learning on Brain Blood Flow Data,” Journal of Near Infrared Spectroscopy, 27(3), pp. 206-219, doi: 10.1177/0967033519837986, April 2019.
  • C. Ye, M. Cenk Gursoy and S. Velipasalar, “Power Control for Wireless VBR Video Streaming: From Optimization to Reinforcement Learning,” IEEE Transactions on Communications, pp. 5629 – 5644, volume: 67 , Issue: 8 , Aug. 2019.
  • M. Cornacchia, B. Kakillioglu, Y. Zheng and S. Velipasalar, “Deep Learning Based Obstacle Detection and Classification with Portable Uncalibrated Patterned Light,” IEEE Sensors Journal, vol. 18, issue: 20, pp. 8416-8425, Oct 2018.
  • Y. Lu and S. Velipasalar, “Autonomous Footstep Counting and Traveled Distance Calculation by Mobile Devices Incorporating Camera and Accelerometer Data,” IEEE Sensors Journal, vol. 17, issue: 21, pp. 7157-7166, Nov. 2017.
  • K. Ozcan, S. Velipasalar and P. Varshney, “Autonomous Fall Detection with Wearable Cameras by using Relative Entropy Distance Measure,” IEEE Transactions on Human-Machine Systems, vol. 47, issue: 1, pp. 31-39, Febr. 2017.
  • M. Cornacchia, K. Ozcan, Y. Zheng and S. Velipasalar, “A Survey on Activity Detection and Classification Using Wearable Sensors,” IEEE Sensors Journal, vol. 17, issue: 2, pp. 386-403, Jan. 2017. Top 25 most downloaded IEEE Sensors Journal paper for nine consecutive months in 2017, and in June 2018 .
  • F. Erden, S. Velipasalar, A. Z. Alkar, A. Enis Cetin, “Sensors in Assisted Living: A Survey of Signal and Image Processing Methods ,” IEEE Signal Processing Magazine, volume:33, issue:2, pp. 36-44, March 2016.
  • K. Ozcan and S. Velipasalar, “Wearable Camera- and Accelerometer-based Fall Detection on Portable Devices ,” IEEE Embedded Systems Letters, volume: 8, issue: 1, pp. 6-9, March 2016.

Pranav Soman

Degree(s):

Ph.D. Bioengineering (Penn State University)

Lab/ Center/ Institute affiliation:

  • BioInspired Institute
  • Biomaterial Institute

Areas of Expertise:

  • Optical printing
  • Bioprinting
  • Microfluidics
  • Organ-On-Chip
  • Tissue engineering

Nature’s marvelous ability to arrange proteins, sugars, and minerals from macro to nano scales has realized a wide range of ‘smart’ multifunctional structures optimized to satisfy specific environmental demands. Man-made manufacturing, however, is not able to match nature’s building capabilities. My central research focus is to develop new processing and printing technologies to create reliable models from single cell to tissue scale to capture key aspects of in vivo physiology and pathophysiology. Toward this goal, my group, with expertise in mechanical engineering, laser optics, biomaterials and cell biology, has developed a technology toolbox to process and print biocompatible thermoplastics, photosensitive hydrogels, and living cells and provide a manufacturing solution to advance research in bioprinting, microfluidics, organ-on-chip, tissue engineering, regenerative medicine, and single cell analysis.

Honors and Awards:

  • 2022           The U.S. Air Force Research Lab Summer Faculty Fellowship Program
  • 2021           Satish Dhawan Visiting Chair Professor at the Indian Institute of Science
  • 2020           Techconnect Defense Innovation Award
  • 2020           E&T Outstanding Innovation in the Manufacturing 4.0
  • 2015  Syracuse University – College of Engineering and Computer Science Award for Faculty Excellence
  • 2010           Dean’s award for academic excellent, Penn State University.
  • 2015            Faculty Excellent Award, Syracuse University

Selected Publications:

Xiong, Z., Kunwar, P., & Soman, P. (2021). Hydrogel‐Based Diffractive Optical Elements (hDOEs) Using Rapid Digital Photopatterning. Advanced optical materials, 9(2), 2001217.

Kunwar, P., Jannini, A.V.S., Xiong, Z., Ransbottom, M.J., Perkins, J.S., Henderson, J.H., Hasenwinkel, J.M. and Soman, P., 2019. High-resolution 3D printing of stretchable hydrogel structures using optical projection lithography. ACS Applied Materials & Interfaces.

Kunwar, P., Xiong, Z., Zhu, Y., Li, H., Filip, A. and Soman, P., 2019. Hybrid Laser Printing of 3D, Multiscale, Multimaterial Hydrogel Structures. Advanced Optical Materials, p.1900656.

Xiong, Z., Li, H., Kunwar, P., Zhu, Y., Ramos, R., Mcloughlin, S., Winston, T., Ma, Z. and Soman, P., 2019. Femtosecond laser induced densification within cell-laden hydrogels results in cellular alignment. Biofabrication, 11(3), p.035005.

Sawyer, S. W., Shridhar, S. V., Zhang, K., Albrecht, L., Filip, A., Horton, J., & Soman, P. (2018). Perfusion directed 3D mineral formation within cell-laden hydrogels. Biofabrication. June 8.

Asif Salekin

Degree:

  • Ph.D. in Computer Science, University of Virginia
  • Master of Computer Science, University of Virginia
  • B.S. in Computer Science and Engineering, Bangladesh University of Engineering and Technology

Lab Affiliation:

Ubiquitous and Intelligent Sensing (UIS Lab)

Areas of Expertise:

  • Pervasive and Ubiquitous Computing
  • Machine Learning
  • Internet of Things (IoT)
  • Human Centric Computing and Sensing
  • Wireless, Connected, and Mobile Health.

I am directing the Laboratory for Ubiquitous and Intelligent Sensing (UIS Lab) at Syracuse University. My research takes a multi-disciplinary approach to develop novel and practical human event sensing technologies that capture observable low-level physical signals from human bodies and surrounding environments and employ new machine learning, signal processing, and natural language processing techniques to rectify the existing sensing technologies. My research exquisition goes beyond the conventional learning or sensing approaches and addresses the research challenges, such as the uncertainties in physical world sensing, interpretability of ML inference, human factors such as the user-context and mobility, limitation of current technologies (i.e., IoT, CPS), and resource constraints of the sensing data and computation platform. A core focus of my research program is to integrate passive sensing and interpretable AI to advance human health assessment, identify latent markers, and automate health monitoring and interventions. Major ongoing funded research projects are (1) NSF SCH (Medium): Psychophysiological Sensing to Enhance Mindfulness-Based Interventions for Self-Regulation of Opioid Cravings, (2) NIH R021 and NIH R-01: Understanding speech, speech-motor-control, and emotional process in early childhood stuttering, (3) NSF CPS (Small): Developing a Socio-Psychological CPS for the Health and Wellness of Dairy Cows. 

Honors and Awards:

  • IAAI Deployed Application Award, The Thirty-Third Annual Conference on Innovative Applications of Artificial Intelligence (IAAI-21)
  • Graduate Student Award for Outstanding Research, Department of Computer Science, UVA, 2018
  • Nominated for the best paper award (AsthmaGuide), Wireless health 2016

Selected Publications:

  • Harshit Sharma, Yi Xiao, Victoria Tumanova, Asif Salekin, “Psychophysiological Arousal in Young Children Who Stutter: An Interpretable AI Approach”, Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT), 2022. (and Ubicomp 2022)
  • Jingyu Xin, Vir V. Phoha, Asif Salekin, “Combating False Data Injection Attacks on Human-Centric Sensing Applications”, Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT), 2022. (and Ubicomp 2022)
  • Cramer et al., “Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States”, The Proceedings of the National Academy of Sciences USA (PNAS), 2022.
  • Fatih Altay, Guillermo Ramón Sánchez, Yanli James, Stephen V. Faraone, Senem Velipasalar, Asif Salekin. Preclinical Stage Alzheimer’s Disease Detection Using Magnetic Resonance Image Scans, The Thirty-Third Annual Conference on Innovative Applications of Artificial Intelligence (IAAI-21).
  • Tianjia He, Lin Zhang, Fanxin Kong, and Asif Salekin. Exploring Inherent Sensor Redundancy for Automotive Anomaly Detection, The 57th Design Automation Conference (DAC), 2020.
  • Salekin, Jeremy W. Eberle, Jeffrey J. Glenn, Bethany A. Teachman, and John A. Stankovic. 2018. A Weakly Supervised Learning Framework for Detecting Social Anxiety and Depression, ACM Interactive, Mobile, Wearable, and Ubiquitous Technologies (IMWUT), Vol. 2, No. 2, Article 81 (June 2018), 26 pages. (and Ubicomp 2018)
  • Salekin, Z. Chen, M. Ahmed, J. Lach, D. Metz, K. de la Haye, B. Bell, and J. Stankovic, Distance Emotion Recognition, ACM Interactive, Mobile, Wearable, and Ubiquitous Technologies (IMWUT), Vol. 1, Issue 3, Sept. 2017, 96:1-96:24 (Ubicomp 2017)

Dacheng Ren

Degrees:

  • B.E. (major) Applied Chemistry, Shanghai Jiao Tong University, P. R. China, 1996.
  • B.E. (minor) Electrical Engineering, Shanghai Jiao Tong University, P. R. China, 1996.
  • M.E. Chemical Engineering, Tianjin University, P. R. China, 1999.
  • Ph.D. Chemical Engineering, University of Connecticut, Storrs, CT, 2003
  • Postdoctoral associate, Chemical Engineering, Cornell University, Ithaca, NY, 2003-2005.

Lab/Center Affiliation:

  • Syracuse Biomaterials Institute

Current Research:

We have broad interests in Biotechnology, especially bacterial control. Historically, our understanding of bacterial physiology and development of antibiotics have been focused on planktonic (free-swimming) cells. However, the vast majority of bacteria in nature exist in surface-attached highly hydrated structures comprising of a polysaccharide matrix secreted by the bound bacterial cells, collectively known as biofilms. With up to 1000 times higher tolerance to antibiotics and disinfectants compared to their planktonic counterparts, deleterious biofilms cause serious problems such as chronic infections in humans as well as persistent corrosion and equipment failure in industry. Biofilms are blamed for billions of dollars of losses and more than 45,000 deaths annually in the U.S. alone. Despite the well-recognized significance of biofilms, the biofilm research is still in its infancy. With the efficacy of antibiotics and disinfectants being intrinsically limiting, new approaches especially those with synergistic effects are desired.

Compared to the deleterious biofilms, which cause serious problems in both medical and engineering environments, biofilms of environmentally friendly bacteria have promising applications. Due to their intrinsic tolerance to toxic agents, such biofilms may provide promising solutions to currently unmet challenges such as the high cost in biofuel production due to the low tolerance of microbes to fermentation products and difficulties in bioremediation of toxic contaminants.

In the Biofilm Engineering Laboratory, we have broad interests in biofilm research including genetic basis of multidrug resistance, biofilm control by engineering smart surfaces and biomaterials, development of novel biofilm and persister inhibitors, as well as biofilm engineering for biofuel production.

Courses Taught:

  • CEN551 Biochemical Engineering
  • BEN301 Biological Principles for Engineers

Honors:

  • Syracuse University LCS Faculty Excellence Award, 2014.
  • NSF CAREER Award 2011-2016.
  • College Technology Educator of the Year, Technology Alliance of Central New York (TACNY), 2010.
  • Early Career Translational Research Award in Biomedical Engineering from the Wallace H. Coulter Foundation, 2009.

Selected Publications:

For a full list of publications, please see http://scholar.google.com/citations?user=85Ty0hAAAAAJ&hl=en&oi=ao.

Fangchao Song, Hyun Koo, and Dacheng Ren. “Effects of material properties on bacterial adhesion and biofilm formation” (Invited Critical Review). Journal of Dental Research. 94: 1027-1034 (2015).

Fangchao Song and Dacheng Ren, “Stiffness of cross-linked poly(dimethylsiloxane) affects bacterial adhesion and antibiotic susceptibility of attached cells”. Langmuir. 30: 10354-10362 (2014).

Huan Gu and Dacheng Ren, “Material and surface engineering to control bacterial adhesion and biofilm formation: a review of recent advances”. Frontiers of Chemical Science & Engineering (Invited Review). 8: 20-33 (2014).

Jiachuan Pan and Dacheng Ren. “Structural effects on persister control by brominated furanones”. Bioorganic & Medicinal Chemistry Letters. 23: 6559-6562 (2013).

Jiachuan Pan, Xin Xie, Wang Tian, Ali Adem Bahar, Nan Lin, Fangchao Song, Jing An and Dacheng Ren. “(Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one sensitizes Escherichia coli persister cells to antibiotics”. Applied Microbiology and Biotechnology. 97: 9145-9154 (2013).

Huan Gu, Shuyu Hou, Chanokpon Yongyat, Suzanne De Tore and Dacheng Ren. “Patterned biofilm formation reveals a mechanism for structural heterogeneity in bacterial biofilms”. Langmuir. 29: 11145-11153 (2013).

Jiachuan Pan, Fangchao Song, and Dacheng Ren. “Controlling persister cells of Pseudomonas aeruginosa PDO300 by (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one”. Bioorganic & Medicinal Chemistry Letters. 23:4648-4651 (2013).

Jiachuan Pan, Ali Adem Bahar, Haseeba Syed, and Dacheng Ren. “Reverting antibiotic tolerance of Pseudomonas aeruginosa PAO1 persister cells by (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one”. PLoS ONE. 2012, 7(9): e45778. doi:10.1371/journal.pone.0045778.

Tagbo H. R. Niepa, Jeremy L. Gilbert and Dacheng Ren. “Controlling Pseudomonas aeruginosa persister cells by weak electrochemical currents and synergistic effects with tobramycin”. Biomaterials. 2012, 33: 7356–7365.

Robert Szkotak, Tagbo H R Niepa, Nikhil Jawrani, Jeremy L Gilbert, Marcus B Jones and Dacheng Ren. “Differential Gene Expression to Investigate the Effects of Low-level Electrochemical Currents on Bacillus subtilis”. AMB Express. 2011, 1:39.

Xi Chen, Mi Zhang, Chunhui Zhou, Neville R. Kallenbach and Dacheng Ren, “Control of bacterial persister cells by Trp/Arg antimicrobial peptides”. Applied and Environmental Microbiology. 2011, 77(14): 4878-4885.

Shuyu Hou, Huan Gu, Cassandra Smith and Dacheng Ren, “Microtopographic patterns affect Escherichia coli biofilm formation on polydimethylsiloxane surfaces”. Langmuir. 2011, 27(6): 2686-2691.

Shuyu Hou, Zhigang Liu, Anne Young, Sheron Mark, Neville Kallenbach and Dacheng Ren, “Structural effects on inhibition of planktonic growth and biofilm formation of Escherichia coli by Trp/Arg containing antimicrobial peptides.” Applied and Environmental Microbiology. 2010,76(6): 1967-1974.

Jiachuan Pan and Dacheng Ren, “Quorum sensing inhibitors: a patent overview”. Expert Opinion On Therapeutic Patents (Invited Review). 2009, 19(11):1581-1601.

Miao Duo, Mi Zhang, Yan-Yeung Luk and Dacheng Ren, “Inhibition of Candida albicans Growth by Brominated Furanones”. Applied Microbiology and Biotechnology. 2009, 84(6):1551-1563.

Shuyu Hou, Erik A. Button, Ricky Lei Wu, Yan-Yeung Luk and Dacheng Ren, “Prolonged Control of Patterned Biofilm Formation by Bio-inert Surface Chemistry”. Chemical Communication. 2009: 1207-1209.

Farzana Rahman

Degrees:

  • Ph.D., Computer Science, Marquette University, Wisconsin, USA (2013)
  • M.S., Computer Science, Marquette University, Wisconsin, USA (2010)
  • B.S., Computer Science and Engineering, Bangladesh University of Engineering and Technology (BUET), Bangladesh (2008)

Research interests:

  • Mobile and pervasive health technologies
  • Internet-of-Things
  • Computer science education
  • Impact of active learning pedagogy in CS courses
  • Broadening participation of women and underrepresented students in CS

Current research:

Her research spans the domains of mobile healthcare, healthcare data analytics, and pervasive health technologies. Broadly, her research focuses on integrating mobile and pervasive technologies in health and wellness environments to improve users’ quality of life, mental and physical wellbeing. Her research also expands in the direction of mobile security, information and communication technology for development (ICT4D), Computer Science education, broadening participation in computing, best practices in undergraduate research, and how different pedagogical practices can increase diversity in CS. She is also interested in finding why and how people from diverse backgrounds are learning programming in 21stcentury and how the development of new kind of scalable programming environments or platform can support all kind of learners.

Teaching Interests:

  • Introduction to Programming
  • Object-Oriented Programming
  • Data Structure
  • Mobile Application Programming
  • Mobile and Pervasive Computing
  • Computer Architecture

Honors:

  • Provost LA Initiative Award, Florida International University, Spring 2018-2019
  • Best paper award, IEEE Conference on Networking Systems and Security (NSysS’ 16), 2016
  • Systers Pass-It-On (PIO) Award, Anita Borg Institute, 2014
  • Best paper award, IEEE International Conference on e-Health Networking, Applications and Services (Healthcom’ 12), 2012

Recent Publications:

  1. Claire Fulk, Grant Hobar, Kevin Olsen, Samy El-Tawab, Puya Ghazizadeh, and Farzana Rahman. Cloud-based Low-cost Energy Monitoring System through the Internet of Things. In Proceedings of the IEEE International Workshop of Mobile and Pervasive Internet of Things (PerIoT 2019), in Conjunction with IEEE Percom ’19. Japan, March 2019.
  2. Farzana Rahman and Samy El-Tawab. App Development for the Social Good: Teaching Socially Conscious Mobile App Development in an Upper-Level Computer Science Course. In Proceedings of the 2019 ASEE Annual Conference and Exposition (ASEE ’19), Orlando, FL, July 2019.
  3. Farzana Rahman. Leveraging Visual Programming Language and Collaborative Learning to Broaden Participation in Computer Science. In Proceedings of the 19th Annual Conference on Information Technology Education (SIGITE ’18), Ft Lauderdale, FL, Oct 2018.
  4. Saiyma Sarmin, Nafisa Anzum, Kazi Hasan Zubaer, Farzana Rahman, A. B. M. Alim Al Islam. Securing Highly-Sensitive Information in Smart Mobile Devices through Difficult-to-Mimic and Single-Time Usage Analytics. In Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems, Computing, Networking and Services (MobiQuitous ’18), Nov 2018.
  5. Farzana Rahman. From App Inventor to Java: Introducing Object-oriented Programming to Middle School Students Through Experiential Learning. In Proceedings of the 2018 ASEE Annual Conference and Exposition (ASEE ’18), Salt Lake City, UT, July 2018.
  6. Farzana Rahman, Healthy Hankerings: Motivating Adolescents to Combat Obesity with a Mobile Application. In Proceedings of the 20th International Conference on Human-Computer Interaction (HCI International ’18), NV, July, 2018.
  7. Farzana Rahman, Perry Fizzano, Evan M. Peck, Shameem Ahmed, and Stu Thompson. How to Build a Student-Centered Research Culture for the Benefit of Undergraduate Students. In Proceedings of the 49th ACM Technical Symposium on Computer Science Education (SIGCSE ’18), Maryland, Feb 2017.

Shikha Nangia

Degrees:

  • Ph. D. Chemistry (2006) University of Minnesota, Twin Cities
  • M.Sc. Chemistry (2000) Indian Institute of Technology, Delhi, India
  • B.Sc. Chemistry (1998) University of Delhi, Delhi, India

Lab/Center Affiliation:

  • Syracuse Biomaterials Institute

Research interests:

  • Blood-brain barrier
  • Targeted cancer drug delivery
  • Multiscale modeling of nanomaterials
  • Nanomedicine
  • Virus nanotechnology

Current Research:

My research group focuses on studying blood-brain barrier using theoretical and computational techniques. The goal is to enable the transport of drug molecules across the blood-brain barrier, which has been the biggest impediment for finding a cure for brain related ailments such as Alzheimer’s and Parkinson’s diseases. This project was funded through the NSF-CAREER award.

Additionally, we our group focuses on computational multiscale modeling of nanomaterials, including nanomedicine, drug delivery nanocarriers, and nano-bio interactions. The goal of this research is to design efficient nanosized drug delivery carriers to target cancer tumor cells that hold the key to a new era of cancer treatment. To achieve our research goals we are developing quantitative approaches for characterizing interaction of nanoscale entities with living matter (serum, cell-membranes, cells). Our computational approaches are directed to analyze these complex nano-bio interactions in an effort to design safe and smart drug delivery nanocarriers.

Courses Taught:

  • Statistical thermodynamics
  • Multiscale computational methods
  • Reaction kinetics
  • Engineering Materials, Properties, and Processing

Honors:

  • 2017 Dean’s Award for Excellence in Education
  • 2017 Meredith Teaching Recognition Award
  • 2016 College Technology Educator of the Year, Technical Alliance of Central New York
  • 2016 ACS OpenEye Outstanding Junior Faculty Award
  • 2015 Nappi Research Competition Award
  • NSF CAREER award (2015)
  • Faculty Excellence Award, College of Engineering and Computer Science, Syracuse University (2015)

Recent Publications:

Development of effective stochastic potential method using random matrix theory for efficient conformational sampling of semiconductor nanoparticles at non-zero temperatures, J. Scher, M. Bayne, A. Srihari, S. Nangia, and A. Chakraborty, Journal of Chemical Physics, 149, 014103 (2018). https://aip.scitation.org/doi/10.1063/1.5026027
Self-assembly simulations of classic claudins-insights into the pore structure, selectivity and higher-order complexes, F. J. Irudayanathan, X. Wang, N. Wang, S. Willsey, I. Seddon, and S. Nangia, Journal of Physical Chemistry B, 122, 7463-7474 (2018). https://pubs.acs.org/doi/10.1021/acs.jpcb.8b03842

Mechanism of Antibacterial Activity of Choline-Based Ionic Liquids (CAGE), Kelly N. Ibsen, H. Ma, A. Banerjee, E. E. L. Tanner, S. Nangia, and S. Mitragotri, ACS Biomaterials Science and Engineering, 4, 2370-2379 (2018). https://pubs.acs.org/doi/abs/10.1021/acsbiomaterials.8b00486

Dynamics of OmpF trimer formation in the bacterial outer membrane of Escherichia coli, H. Ma, A. Khan, and S. Nangia, Langmuir, 34, 5623-5634 (2018). https://pubs.acs.org/doi/10.1021/acs.langmuir.7b02653

Architecture of the paracellular channels formed by Claudins of the blood-brain barrier tight junctions, F. J. Irudayanathan, N. Wang, X. Wang , and S. Nangia, Annals of the New York Academy of Sciences, 1749-6632 (2017). https://nyaspubs.onlinelibrary.wiley.com/doi/full/10.1111/nyas.13378

Modeling diversity in structures of bacterial outer membrane lipids H. Ma, D. D. Cummins, N. B. Edelstein, J. Gomez, A. Khan, M. D. Llewellyn, T. Picudella,  S. R. Willsey and S. Nangia, Journal of Chemical Theory and Computation, 13, 811–824 (2017). http://dx.doi.org/10.1021/acs.jctc.6b00856

Drug-specific design of telodendrimer architecture for effective Doxorubicin encapsulation, W. Jiang, X. Wang, D. Guo, J. Luo, and S. Nangia, Journal of Physical Chemistry B, 120, 9766–9777 (2016).  http://dx.doi.org/10.1021/acs.jpcb.6b06070

Zhen Ma

Education:

  • Postdoc, University of California, Berkeley
  • Ph.D. Clemson University
  • M.S. Tianjin University
  • B.S. Tianjin University

Areas of Expertise::

  • Stem Cell Engineering Developmental
  • Cardiac tissue engineering and regenerative medicine
  • 3D Organoid Technology

Human induced pluripotent stem cells (hiPSCs) allows the recapitulation of human disease models in vitro, which can be used to both study disease mechanisms and ultimately design and screen personalized therapeutics prior to large animal or clinical trials. My research focuses on developing multi-scale cardiac models through the combination of stem cell biology, micro/nanotechnology and cardiovascular research. These in vitro models help us not only understand a variety of fundamental questions on cardiac physiology and development, but also improve the diagnosis and treatment for human heart diseases.

Honors and Awards:

  • Rising Stars Award of BMES Cellular and Molecular Bioengineering
  • National Science Foundation CAREER Award
  • Lush Prize Young Researcher at Americas, Lush Cosmetics

Selected Publications:

  • Kowalczewski A., Sakolish C.M., Hoang P., Liu X., Jacquir S., Rusyn I., Ma Z. (2022) “Integrating nonlinear analysis and machine learning for human induced pluripotent stem cell-based drug cardiotoxicity testing” Journal of Tissue Engineering and Regenerative Medicine 16(8): 732-743.
  • Shi H., Wu X., Sun S., Wang C., Ash-Shakoor A., Mather P.T., Henderson J.H., Ma Z. (2022) “Profiling the responsiveness of focal adhesions of human cardiomyocytes to extracellular dynamic nano-topography” Bioactive Materials 10: 367-77.
  • Hoang P., Kowalczewski A., Sun S., Winston T.S., Archilla A., Lemus S., Ercan-Sencicek A.G., Gupta A.R., Liu W., Kontaridis M.I., Amack J., Ma Z. (2021) “Engineering spatial-organized cardiac organoids for developmental toxicity testing” Stem Cell Reports 16(5): 1228-1244.
  • Ma Z., Huebsch H., Koo S., Mandegar M.A., Siemons B., Conklin B.R., Grigoropoulos C.P., Healy K.E. (2018) “Contractile deficits in engineered cardiac microtissues as a result of MYBPC3 deficiency and mechanical overload” Nature Biomedical Engineering 2(12): 955–67.

Era Jain

Experience:

  • Research Scientist, Washington University in Saint Louis
  • Postdoctoral Fellow and Instructor, Saint Louis University
  • Postdoctoral Associate, Virginia Tech

Degrees:

  • Ph.D., Indian Institute of Technology Kanpur, India, 2011
  • Bachelor’s in Pharmacy, India, 2004

Lab/Center Affiliation:

  • Syracuse BioInspired Institute

Areas of Expertise:

  • Targeted and programed drug delivery for macrophages
  • Injectable and biodegradable hydrogels and scaffolds
  • Musculoskeletal tissue engineering
  • Drug Delivery

Inflammation is a primary component of all diseases including several musculoskeletal disorders such as arthritis. The Jain Lab research focuses on engineering immunomodulatory biomaterials for advancing treatment of musculoskeletal disorders and related inflammatory disorders. We are particularly interested in design of macrophage targeting and programed drug delivery systems for spatially and temporally controlled biomolecule release to regulate inflammation. We employ a combination of in vitro models and pre-clinical animal models to evaluate the translational potential of these novel delivery systems.

Honors and Awards

  • 2021 Discovery Award (DoD)
  • 2018 Travel Award for Best Poster, Musculoskeletal Research Center, Winter Symposium, Washington University in Saint Louis 
  • 2017 Best Undergraduate Poster Award to a mentee at STLAURUS 2017
  • 2004-2010 Graduate Research Scholarship, Department of Biotechnology (DBT), India
  • 2008 Travel grant for attending from Council of Scientific and Industrial Research (CSIR), India.

Selected Publications:

  • I.M. Berke, E. Jain, B.Yavuz, T. McGrath, L. Jing, M. Silva, G. Mbalaviele, F. Guilak, D. Kaplan, L.A. Setton. NF-κB-mediated effects on behavior and cartilage pathology in a non-invasive loading model of post-traumatic osteoarthritis, Osteoarthritis and Cartilage (2021), 29, 248-256.
  • E. Jain, S. Neal, H.Graf, X. Tan, R. Balasubramaniam, and N.Huebsch Copper-Free Azide–Alkyne Cycloaddition for Peptide Modification of Alginate Hydrogels ACS Applied Bio Materials (2021) 4 (2), 1229-1237.
  • X, Tan, E. Jain, M.N. Barcellona, E. Morris, S. Neal, M.C. Gupta, J.M. Buchowski, M. Kelly, L.A. Setton, N. Huebsch: Integrin and syndecan peptide-conjugated alginate hydrogel for modulation of nucleus pulposus cell phenotype. Biomaterials. 2021.
  • E. Jain, N.Chinzei, A. Blanco, N. Case, L. J. Sandell, S. Sell, M. F.Rai, S. P. Zustiak, Sustained release of platelet-rich plasma from polyethylene glycol hydrogels exerts beneficial effects on chondrocytes, J. Orthop. res. (https://doi.org/10.1002/jor.24404)
  • E. Jain, A.S. Qayyum, G. Kolar, Y. Kim, S.A. Sell, S.P. Zustiak, Design of electrohydrodynamic sprayed polyethylene glycol hydrogel microspheres for cell encapsulation, Biofabrication 9 (2017) 025019.
  • E. Jain, S. Sheth, A. Dunn, S.P. Zustiak, S.A. Sell, Sustained release of multicomponent platelet-rich plasma proteins from hydrolytically degradable PEG hydrogels, J Biomed Mater Res A 105 (2017) 3304-3314.
  • E. Jain, L. Hill, E. Canning, S.A. Sell, S.P. Zustiak, Control of gelation, degradation and physical properties of polyethylene glycol hydrogels through the chemical and physical identity of the crosslinker, J Mater Chem B 5 (2017) 2679-2691.
  • S.G. Priya, A. Gupta, E. Jain, J. Sarkar, A. Damania, P.R. Jagdale, B.P. Chaudhari, K.C. Gupta, A. Kumar, Bilayer Cryogel Wound Dressing and Skin Regeneration Grafts for the Treatment of Acute Skin Wounds, ACS Appl Mater Inter 8 (2016) 15145-15159.

James H. Henderson

Degree(s):

  • 2004 Ph.D. Mechanical Engineering Stanford University
  • 2001 M.S. Mechanical Engineering Stanford University
  • 1999 B.S. Mechanical Engineering Rice University, Summa Cum Laude

Lab/Center Affiliation(s):

  • BioInspired Institute

Areas of Expertise:

  • Cell biomechanics and mechanobiology, cell and molecular biology, mechanics, imaging, and computational tools.
  • Functional shape-memory materials to enable innovative strategies to study and control mechanobiological and biomechanical aspects of cell and tissue function and repair.
  • Long-timescale, accurate, and efficient tracking and computational analysis of cells and subcellular structures in complex in vitro environments.

James (Jay) Henderson, PhD, is an Associate Professor of Biomedical and Chemical Engineering and the Associate Director of BioInspired Syracuse: The Institute for Material and Living Systems at Syracuse University. His training in Mechanical Engineering was performed at Rice University (BS) and at Stanford University (MS, PhD), where he was a dual Hertz Foundation/Burt and Deedee McMurtry Stanford Graduate Fellow. He performed postdoctoral training in the departments of Biology and Orthopaedics at Case Western Reserve University as an Arthritis Foundation Postdoctoral Fellow. At Syracuse University, the Henderson lab focuses on the study and application of mechanobiology with an emphasis on the development of enabling cytocompatibility and biocompatible shape-memory polymer platforms. Dr. Henderson is a faculty member of the Syracuse Biomaterials Innovation Facility and of the SUNY Upstate Medical University Cancer Research Institute and holds an adjunct position in the Syracuse University department of Biology.

Honors and Awards:

  • 2017 Excellence in Graduate Education Faculty Excellence Award, Syracuse University
  • 2016  James K. Duah-Agyeman Faculty Award, Center for Graduate Preparation and Achievement, Syracuse University
  • 2012 Defense Advanced Research Projects Agency (DARPA) Young Faculty Award
  • 2010 College of Engineering and Computer Science Faculty Excellence Award
  • 2007 New Investigator Recognition Award (NIRA), 6th Combined Meeting of the Orthopaedic Research Societies
  • 2006–2008 Arthritis Foundation Postdoctoral Fellow
  • 2005 Aspiring Investigator Award, 5th Annual Meeting of the Midwestern Tissue Engineering Consortium

Selected Publications:

Chen J, Hamilton, LE, Mather PT, and Henderson JH. Cell-responsive shape memory polymers. ACS Biomaterials Science & Engineering. In press. Selected to be featured as an ACS Editors’ Choice. https://doi.org/10.1021/acsbiomaterials.2c00405

Pieri KG, Felix BM, Zhang T, Soman P, and Henderson JH. Printing parameters affect key properties of 4D printed shape memory polymers. 3D Printing and Additive Manufacturing. http://doi.org/10.1089/3dp.2021.0072 In press.

Narkar AR, Tong Z, Soman P (co-corresponding author), and Henderson JH. Smart biomaterial platforms: controlling and being controlled by cells. Biomaterials, 283: 121450, 2022. https://doi.org/10.1016/j.biomaterials.2022.121450

Brasch ME, Passucci G, Guldavy A, Turner CE, Manning ML, and Henderson JH. Nuclear position relative to the Golgi body and nuclear orientation are differentially responsive indicators of cell polarized motility. PLoS One, 14 (2), e0211408, 2019. Selected by the editors to be highlighted on the journal homepage. https://doi.org/10.1371/journal.pone.0211408

Buffington SL, Ali MM, Paul JE, Macios MM, Mather PT, and Henderson JH. Enzymatically triggered shape memory polymers. Acta Biomaterialia, 84, 88–97, 2019. https://doi.org/10.1016/j.actbio.2018.11.031

Wang J, Quach A, Brasch ME, Turner CE, and Henderson JH. On-command on/off switching of progenitor cell and cancer cell polarized motility and aligned morphology via a cytocompatible shape memory polymer scaffold. Biomaterials, 140, 150-61, 2017. https://doi.org/10.1016/j.biomaterials.2017.06.016

Tseng L, Wang J, Baker RM, Wang G, Mather PT, and Henderson JH. Osteogenic capacity of human adipose-derived stem cells is preserved following triggering of shape memory scaffolds. Tissue Engineering Part A. August, 22(15-16), 1026-1035, 2016. https://doi.org/10.1089/ten.tea.2016.0095

Baker RM, Tseng L, Iannolo MT, Oest ME, and Henderson JH. Self-deploying shape memory polymer scaffolds for grafting and stabilizing complex bone defects: A mouse femoral segmental defect study. Biomaterials, 76, 388-98, 2016. https://doi.org/10.1016/j.biomaterials.2015.10.064

Baker RM, Brasch ME, Manning ML, and Henderson JH. Automated, contour-based tracking and analysis of cell behaviour over long timescales in environments of varying complexity and cell density. Journal of the Royal Society Interface, 11(97), 20140386, 2014. https://doi.org/10.1098/rsif.2014.0386 Program download at: http://henderson.syr.edu/downloads/

Tseng L, Mather PT, and Henderson JH. Shape-memory actuated change in scaffold fiber alignment directs stem cell morphology. Acta Biomaterialia, 9, 8790-8801, 2013. https://doi.org/10.1016/j.actbio.2013.06.043

Davis KA, Burke KA, Mather PT, and Henderson JH. Dynamic cell behavior on shape memory polymer substrates. Biomaterials, 32, 2285–2293, 2011. https://doi.org/10.1016/J.Biomaterials.2010.12.006

Victor Duenas

Degrees:

  • Ph.D., 2018, University of Florida

Areas of Expertise:

  • Nonlinear and Adaptive Control
  • Rehabilitation Robotics
  • Powered Exoskeletons
  • Functional Electrical Stimulation (FES)

Areas of expertise include design, analysis, and implementation of intelligent closed-loop control methods for physical human-robot interaction. Research interests involve an integration of powered lower-limb exoskeletons, motorized cycling, functional electrical stimulation (FES), wearable devices, and neuromuscular control.

Honors and Awards:

  • 2019 IEEE Control Systems Technology Award
  • MAE Department Best Dissertation Award 2018, University of Florida
  • 2016 Vodovnik Best Student Paper Award, Third Place International Conference of Electrical Stimulation Society

Selected Publications:

  • C. Chang, J. Casas, A. Sanyal, and V. H. Duenas, “Motorized FES-Cycling and Closed-Loop Nonlinear Control for Power Tracking using a Finite-Time Stable Torque Algorithm,” Front. Control Eng., Vol. 3, Article 910126,August 2022, doi: 10.3389/fcteg.2022.910126.
  • C. Chang, J. Casas, S. Brose, and V. H. Duenas, “Closed-loop Torque and Kinematic Control of a Hybrid Lower-limb Exoskeleton for Treadmill Walking,” Front. Robot. AI, Vol. 8, Article 702860, January 2022, doi: 10.3389/frobt.2021.702860.
  • C. Cousin, V. H. Duenas, and W. E. Dixon, “FES Cycling and Closed-Loop Feedback Control for Rehabilitative Human-Robot Interaction,” Robotics, Vol. 10, No. 61, 2021, doi.org/10.3390/robotics10020061.
  • V. H. Duenas, C. Cousin, V. Ghanbari, E. J. Fox, and W. E. Dixon, “Torque and Cadence Tracking in Functional Electrical Stimulation Induced Cycling using Passivity-Based Spatial Repetitive Learning Control,” Automatica, Vol. 115, May 2020, DOI:10.1016/j.automatica.2020.108852.

Mary Beth Browning Monroe

Lab/Center Affiliation:

BioInspired Institute

Research interests:

  • Biomaterials
  • Polymers
  • Shape Memory Polymers
  • Wound Healing
  • Tissue Engineering

The Monroe Biomaterials Lab utilizes basic and application-focused research to fabricate and characterize polymeric biomaterials with improved healing outcomes. Our long-term research vision is to make fundamental advances in polymer chemistry that enable safer and more effective medical devices. Current research projects include (1) the development of hemostatic foams to control bleeding in gunshot wounds; (2) synthesis and characterization of hydrogels for chronic wound healing, Crohn’s fistula closure, and cell delivery; and (3) ‘smart’ materials to improve infection surveillance, prevention, and treatment.

Honors and Awards:

  • NIH National Research Service Award Post-doctoral Fellowship (2015)
  • NSF Graduate Research Fellowship (2010-13)
  • P.E.O. Scholar Award, Endowed Scholar: Presidential Scholar Award (2012-13)
  • Acta Biomaterialia Student Award (2012)
  • Outstanding Engineering Graduate Student Award, Dwight Look College of Engineering, Texas A&M University (2012)

Selected Publications:

  • H.T. Beaman, B. Howes, P.S. Ganesh, M.B.B. Monroe, “Shape Memory Polymer Hydrogels with Cell-Responsive Degradation Mechanisms for Crohn’s Fistula Closure,” Journal of Biomedical Materials Research, Part A. 1-12 (2022). DOI: 10.1002/jbm.a.37376. Featured in Society for Biomaterials 2022 Awards Issue.
  • M. Ramezani, M.B.B. Monroe, “Biostable segmented thermoplastic polyurethane shape memory polymers for smart biomedical applications,” ACS Applied Polymer Materials, 4 (3) 1956–1965 (2022). DOI: 10.1021/acsapm.1c01808
  • C. Du, J. Liu, D.A. Fikhman, K.S. Dong, M.B.B. Monroe, “Shape Memory Polymer Foams with Phenolic Acid-Based Antioxidant and Antimicrobial Properties for Traumatic Wound Healing,” Frontiers in Bioengineering and Biotechnology. 10, 8093961 (2022). DOI: 10.3389/fbioe.2022.809361
  • H.T. BeamanE. Shepherd, J. Satalin, S. Blair, H. Ramcharran, K. DongD. Fikhman, G. Nieman, S.G. Schauer, M.B.B. Monroe, “Hemostatic Shape Memory Polymer Foams With Improved Survival in a Lethal Traumatic Hemorrhage Model,” Acta Biomaterialia. 137, 112-123 (2022). DOI: 10.1016/j.actbio.2021.10.005