Michael Blatchley

Assistant Professor

Bowne 318D

mrblatch@syr.edu

315-443-1917

Lab/ Center/ Institute affiliation or affiliation – BioInspired Institute

Areas of Expertise:

  • 4D Biomaterials
  • Organoids
  • Vascularization
  • Extracellular Matrix
  • Tissue Morphogenesis

My lab’s research focuses on constructing benchtop models of human tissues. We’re really interested in understanding the “rules of life” for how tissues form, so we can use that knowledge to improve the biomimicry of our engineered tissue models to understand the biology of development and disease.

How we do it: We do this by first mining existing datasets and using advanced imaging tools to further our understanding of homeostatic or pathological characteristics of tissue-specific microenvironments. We then take that knowledge, decide what parameter(s) we want to investigate, and engineer inquiry-specific microenvironments using synthetic hydrogels. Some projects focus on how altered initial conditions (e.g., matrix stiffness or viscoelasticity, integrin binding, extracellular matrix composition, and cell composition) impact morphogenesis. Other projects focus on the role of spatiotemporal dynamics of the extracellular microenvironment in shaping growing tissues. For this work, we use light-tunable materials to alter the properties of our synthetic microenvironments, in order to guide morphogenesis.

Honors and Awards:

NIDDK K99/R00 Pathway to Independence Award (NIH)

American Institute of Chemists Postdoctoral Award (University of Colorado Boulder)

Young Investigator’s Day Paul Talalay Award (Johns Hopkins University)

NHBLI F31 NRSA Individual Predoctoral Fellowship (NIH)

Predoctoral Fellowship (American Heart Association)

Selected Publications:

  1. Blatchley MR, Anseth KS. Middle-out methods for spatiotemporal tissue engineering of organoids. Nature Reviews Bioengineering, 1, 329-345, 2023. (link)
  2. Yavitt FM, Kirkpatrick BE, Blatchley MR, Speckl KF, Mohagheghian E, Moldovan R, Wang N, Dempsey PJ, Anseth KS. In situ modulation of intestinal organoid epithelial curvature through photoinduced viscoelasticity directs crypt morphogenesis. Science Advances, 9 (3), eadd5668, 2023. (link)
  3. Blatchley MR*, Günay KA*, Yavitt FM, Hawat EM, Dempsey PJ, Anseth KS. In situ super-resolution imaging of organoids and extracellular matrix interactions via photo-transfer by allyl sulfide exchange expansion microscopy (PhASE-ExM), Advanced Materials, 2109252, 2022. (link)
  4. Blatchley MR, Hall F, Ntekoumes D, Cho H, Kailash V, Gerecht S. Discretizing 3D oxygen gradients in hydrogels to modulate and investigate cellular processes, Advanced Science, 2100190, 2021. (link)
  5. Blatchley MR, Gerecht S. Re-constructing the vascular developmental milieu in vitro, Trends in Cell Biology, 30 (1), 15-31, 2020. Cover Feature. (link)
  6. Blatchley MR, Hall F, Wang S, Pruitt HC, Gerecht S. Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis, Science Advances, 5 (3), eaau7518, 2019. (link)
  7. Cho H, Blatchley MR, Duh EJ, Gerecht S. Acellular and cellular approaches to improve diabetic wound healing, Advanced Drug Delivery Reviews, 146, 267-288, 2018. (link)
  8. Lewis DM*, Blatchley MR*, Park KM, Gerecht, S. O2-controllable hydrogels for studying cellular responses to hypoxic gradients in three dimensions in vitro and in vivo, Nature Protocols, 12 (8), 1620-1638, 2017. (link)