Jason Pollack

Assistant Professor

LCS CST 4-295

japollac@syr.edu

Areas of Expertise:

-Quantum information

-Decoherence

-Thermalization

-Emergent spacetime and quantum gravity

My research is aimed at elucidating how, and in what circumstances, thermalization, gravitational dynamics, and classical observables can be derived from the more fundamental underlying features of a quantum theory. My research is motivated by cosmology and quantum gravity, but primarily uses tools from quantum information. One of my research programs focuses on understanding the entanglement structure of quantum states. A second research program is concerned with the physics seen by observers with only limited access to, or an imperfect ability to make measurements on, the quantum state.

Honors and Awards:

Member, Simons “It from Qubit” collaboration

Graduate Dean’s Award for Outstanding Community Service, Caltech, 2017

Chair, Caltech Graduate Student Council, 2015-6

Troesh Fellow in Physics, Caltech, 2014-5

Kusaka Memorial Prize in Physics, Princeton Physics Department, September 2011

Selected Publications:

S. Aaronson and J. Pollack, 2022, “Discrete Bulk Reconstruction,” JHEP, 2023, 37; arXiv:2210.15601.

C. Keeler, W. Munizzi, and J. Pollack, 2022, “An Entropic Lens on Stabilizer States,” Phys. Rev. A 106, 062418; arXiv:2204.07593.

J. Pollack, M. Rozali, J. Sully, and D. Wakeham, 2020, “Eigenstate Thermalization and Disorder Averaging in Gravity,” Phys. Rev. Lett. 125, 021601 (2020); arXiv:2002.02971.

O. Kabernik, J. Pollack, and A. Singh, 2019, “Quantum State Reduction: Generalized Bipartitions from Algebras of Observables,” Phys. Rev. A 101, 032303 (2020); arXiv:1909.12851.

A. Bartolotta, S.M. Carroll, S. Leichenauer, and J. Pollack, 2015, “The Bayesian Second Law of Thermodynamics,” Phys. Rev. E 94, 022102 (2016); arXiv:1508.02421.

K.K. Boddy, S.M. Carroll, and J. Pollack, 2014, “De Sitter Space Without Dynamical Quantum Fluctuations,” Found. Phys.46, 702 (2016); arXiv:1405.0298.